| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/sparse_normal_cholesky_solver.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cstring> | 
 | #include <ctime> | 
 | #include <memory> | 
 |  | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/inner_product_computer.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/iterative_refiner.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/sparse_cholesky.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "ceres/wall_time.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | SparseNormalCholeskySolver::SparseNormalCholeskySolver( | 
 |     const LinearSolver::Options& options) | 
 |     : options_(options) { | 
 |   sparse_cholesky_ = SparseCholesky::Create(options); | 
 | } | 
 |  | 
 | SparseNormalCholeskySolver::~SparseNormalCholeskySolver() = default; | 
 |  | 
 | LinearSolver::Summary SparseNormalCholeskySolver::SolveImpl( | 
 |     BlockSparseMatrix* A, | 
 |     const double* b, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double* x) { | 
 |   EventLogger event_logger("SparseNormalCholeskySolver::Solve"); | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 1; | 
 |   summary.termination_type = LinearSolverTerminationType::SUCCESS; | 
 |   summary.message = "Success."; | 
 |  | 
 |   const int num_cols = A->num_cols(); | 
 |   VectorRef xref(x, num_cols); | 
 |   xref.setZero(); | 
 |   rhs_.resize(num_cols); | 
 |   rhs_.setZero(); | 
 |   A->LeftMultiplyAndAccumulate(b, rhs_.data()); | 
 |   event_logger.AddEvent("Compute RHS"); | 
 |  | 
 |   if (per_solve_options.D != nullptr) { | 
 |     // Temporarily append a diagonal block to the A matrix, but undo | 
 |     // it before returning the matrix to the user. | 
 |     std::unique_ptr<BlockSparseMatrix> regularizer = | 
 |         BlockSparseMatrix::CreateDiagonalMatrix(per_solve_options.D, | 
 |                                                 A->block_structure()->cols); | 
 |     event_logger.AddEvent("Diagonal"); | 
 |     A->AppendRows(*regularizer); | 
 |     event_logger.AddEvent("Append"); | 
 |   } | 
 |   event_logger.AddEvent("Append Rows"); | 
 |  | 
 |   if (inner_product_computer_.get() == nullptr) { | 
 |     inner_product_computer_ = | 
 |         InnerProductComputer::Create(*A, sparse_cholesky_->StorageType()); | 
 |  | 
 |     event_logger.AddEvent("InnerProductComputer::Create"); | 
 |   } | 
 |  | 
 |   inner_product_computer_->Compute(); | 
 |   event_logger.AddEvent("InnerProductComputer::Compute"); | 
 |  | 
 |   if (per_solve_options.D != nullptr) { | 
 |     A->DeleteRowBlocks(A->block_structure()->cols.size()); | 
 |   } | 
 |  | 
 |   summary.termination_type = sparse_cholesky_->FactorAndSolve( | 
 |       inner_product_computer_->mutable_result(), | 
 |       rhs_.data(), | 
 |       x, | 
 |       &summary.message); | 
 |   event_logger.AddEvent("SparseCholesky::FactorAndSolve"); | 
 |   return summary; | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |