|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | //         keir@google.com (Keir Mierle) | 
|  | // | 
|  | // The Problem object is used to build and hold least squares problems. | 
|  |  | 
|  | #ifndef CERES_PUBLIC_PROBLEM_H_ | 
|  | #define CERES_PUBLIC_PROBLEM_H_ | 
|  |  | 
|  | #include <cstddef> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <set> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/context.h" | 
|  | #include "ceres/internal/disable_warnings.h" | 
|  | #include "ceres/internal/port.h" | 
|  | #include "ceres/types.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | class CostFunction; | 
|  | class LossFunction; | 
|  | class LocalParameterization; | 
|  | class Solver; | 
|  | struct CRSMatrix; | 
|  |  | 
|  | namespace internal { | 
|  | class Preprocessor; | 
|  | class ProblemImpl; | 
|  | class ParameterBlock; | 
|  | class ResidualBlock; | 
|  | }  // namespace internal | 
|  |  | 
|  | // A ResidualBlockId is an opaque handle clients can use to remove residual | 
|  | // blocks from a Problem after adding them. | 
|  | typedef internal::ResidualBlock* ResidualBlockId; | 
|  |  | 
|  | // A class to represent non-linear least squares problems. Such | 
|  | // problems have a cost function that is a sum of error terms (known | 
|  | // as "residuals"), where each residual is a function of some subset | 
|  | // of the parameters. The cost function takes the form | 
|  | // | 
|  | //    N    1 | 
|  | //   SUM  --- loss( || r_i1, r_i2,..., r_ik ||^2  ), | 
|  | //   i=1   2 | 
|  | // | 
|  | // where | 
|  | // | 
|  | //   r_ij     is residual number i, component j; the residual is a | 
|  | //            function of some subset of the parameters x1...xk. For | 
|  | //            example, in a structure from motion problem a residual | 
|  | //            might be the difference between a measured point in an | 
|  | //            image and the reprojected position for the matching | 
|  | //            camera, point pair. The residual would have two | 
|  | //            components, error in x and error in y. | 
|  | // | 
|  | //   loss(y)  is the loss function; for example, squared error or | 
|  | //            Huber L1 loss. If loss(y) = y, then the cost function is | 
|  | //            non-robustified least squares. | 
|  | // | 
|  | // This class is specifically designed to address the important subset | 
|  | // of "sparse" least squares problems, where each component of the | 
|  | // residual depends only on a small number number of parameters, even | 
|  | // though the total number of residuals and parameters may be very | 
|  | // large. This property affords tremendous gains in scale, allowing | 
|  | // efficient solving of large problems that are otherwise | 
|  | // inaccessible. | 
|  | // | 
|  | // The canonical example of a sparse least squares problem is | 
|  | // "structure-from-motion" (SFM), where the parameters are points and | 
|  | // cameras, and residuals are reprojection errors. Typically a single | 
|  | // residual will depend only on 9 parameters (3 for the point, 6 for | 
|  | // the camera). | 
|  | // | 
|  | // To create a least squares problem, use the AddResidualBlock() and | 
|  | // AddParameterBlock() methods, documented below. Here is an example least | 
|  | // squares problem containing 3 parameter blocks of sizes 3, 4 and 5 | 
|  | // respectively and two residual terms of size 2 and 6: | 
|  | // | 
|  | //   double x1[] = { 1.0, 2.0, 3.0 }; | 
|  | //   double x2[] = { 1.0, 2.0, 3.0, 5.0 }; | 
|  | //   double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 }; | 
|  | // | 
|  | //   Problem problem; | 
|  | // | 
|  | //   problem.AddResidualBlock(new MyUnaryCostFunction(...), x1); | 
|  | //   problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3); | 
|  | // | 
|  | // Please see cost_function.h for details of the CostFunction object. | 
|  | class CERES_EXPORT Problem { | 
|  | public: | 
|  | struct CERES_EXPORT Options { | 
|  | // These flags control whether the Problem object owns the cost | 
|  | // functions, loss functions, and parameterizations passed into | 
|  | // the Problem. If set to TAKE_OWNERSHIP, then the problem object | 
|  | // will delete the corresponding cost or loss functions on | 
|  | // destruction. The destructor is careful to delete the pointers | 
|  | // only once, since sharing cost/loss/parameterizations is | 
|  | // allowed. | 
|  | Ownership cost_function_ownership = TAKE_OWNERSHIP; | 
|  | Ownership loss_function_ownership = TAKE_OWNERSHIP; | 
|  | Ownership local_parameterization_ownership = TAKE_OWNERSHIP; | 
|  |  | 
|  | // If true, trades memory for faster RemoveResidualBlock() and | 
|  | // RemoveParameterBlock() operations. | 
|  | // | 
|  | // By default, RemoveParameterBlock() and RemoveResidualBlock() take time | 
|  | // proportional to the size of the entire problem.  If you only ever remove | 
|  | // parameters or residuals from the problem occassionally, this might be | 
|  | // acceptable.  However, if you have memory to spare, enable this option to | 
|  | // make RemoveParameterBlock() take time proportional to the number of | 
|  | // residual blocks that depend on it, and RemoveResidualBlock() take (on | 
|  | // average) constant time. | 
|  | // | 
|  | // The increase in memory usage is twofold: an additonal hash set per | 
|  | // parameter block containing all the residuals that depend on the parameter | 
|  | // block; and a hash set in the problem containing all residuals. | 
|  | bool enable_fast_removal = false; | 
|  |  | 
|  | // By default, Ceres performs a variety of safety checks when constructing | 
|  | // the problem. There is a small but measurable performance penalty to | 
|  | // these checks, typically around 5% of construction time. If you are sure | 
|  | // your problem construction is correct, and 5% of the problem construction | 
|  | // time is truly an overhead you want to avoid, then you can set | 
|  | // disable_all_safety_checks to true. | 
|  | // | 
|  | // WARNING: Do not set this to true, unless you are absolutely sure of what | 
|  | // you are doing. | 
|  | bool disable_all_safety_checks = false; | 
|  |  | 
|  | // A Ceres global context to use for solving this problem. This may help to | 
|  | // reduce computation time as Ceres can reuse expensive objects to create. | 
|  | // The context object can be NULL, in which case Ceres may create one. | 
|  | // | 
|  | // Ceres does NOT take ownership of the pointer. | 
|  | Context* context = nullptr; | 
|  | }; | 
|  |  | 
|  | // The default constructor is equivalent to the | 
|  | // invocation Problem(Problem::Options()). | 
|  | Problem(); | 
|  | explicit Problem(const Options& options); | 
|  | Problem(const Problem&) = delete; | 
|  | void operator=(const Problem&) = delete; | 
|  |  | 
|  | ~Problem(); | 
|  |  | 
|  | // Add a residual block to the overall cost function. The cost | 
|  | // function carries with it information about the sizes of the | 
|  | // parameter blocks it expects. The function checks that these match | 
|  | // the sizes of the parameter blocks listed in parameter_blocks. The | 
|  | // program aborts if a mismatch is detected. loss_function can be | 
|  | // NULL, in which case the cost of the term is just the squared norm | 
|  | // of the residuals. | 
|  | // | 
|  | // The user has the option of explicitly adding the parameter blocks | 
|  | // using AddParameterBlock. This causes additional correctness | 
|  | // checking; however, AddResidualBlock implicitly adds the parameter | 
|  | // blocks if they are not present, so calling AddParameterBlock | 
|  | // explicitly is not required. | 
|  | // | 
|  | // The Problem object by default takes ownership of the | 
|  | // cost_function and loss_function pointers. These objects remain | 
|  | // live for the life of the Problem object. If the user wishes to | 
|  | // keep control over the destruction of these objects, then they can | 
|  | // do this by setting the corresponding enums in the Options struct. | 
|  | // | 
|  | // Note: Even though the Problem takes ownership of cost_function | 
|  | // and loss_function, it does not preclude the user from re-using | 
|  | // them in another residual block. The destructor takes care to call | 
|  | // delete on each cost_function or loss_function pointer only once, | 
|  | // regardless of how many residual blocks refer to them. | 
|  | // | 
|  | // Example usage: | 
|  | // | 
|  | //   double x1[] = {1.0, 2.0, 3.0}; | 
|  | //   double x2[] = {1.0, 2.0, 5.0, 6.0}; | 
|  | //   double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0}; | 
|  | // | 
|  | //   Problem problem; | 
|  | // | 
|  | //   problem.AddResidualBlock(new MyUnaryCostFunction(...), NULL, x1); | 
|  | //   problem.AddResidualBlock(new MyBinaryCostFunction(...), NULL, x2, x1); | 
|  | // | 
|  | ResidualBlockId AddResidualBlock( | 
|  | CostFunction* cost_function, | 
|  | LossFunction* loss_function, | 
|  | const std::vector<double*>& parameter_blocks); | 
|  |  | 
|  | // Convenience methods for adding residuals with a small number of | 
|  | // parameters. This is the common case. Instead of specifying the | 
|  | // parameter block arguments as a vector, list them as pointers. | 
|  | ResidualBlockId AddResidualBlock(CostFunction* cost_function, | 
|  | LossFunction* loss_function, | 
|  | double* x0); | 
|  | ResidualBlockId AddResidualBlock(CostFunction* cost_function, | 
|  | LossFunction* loss_function, | 
|  | double* x0, double* x1); | 
|  | ResidualBlockId AddResidualBlock(CostFunction* cost_function, | 
|  | LossFunction* loss_function, | 
|  | double* x0, double* x1, double* x2); | 
|  | ResidualBlockId AddResidualBlock(CostFunction* cost_function, | 
|  | LossFunction* loss_function, | 
|  | double* x0, double* x1, double* x2, | 
|  | double* x3); | 
|  | ResidualBlockId AddResidualBlock(CostFunction* cost_function, | 
|  | LossFunction* loss_function, | 
|  | double* x0, double* x1, double* x2, | 
|  | double* x3, double* x4); | 
|  | ResidualBlockId AddResidualBlock(CostFunction* cost_function, | 
|  | LossFunction* loss_function, | 
|  | double* x0, double* x1, double* x2, | 
|  | double* x3, double* x4, double* x5); | 
|  | ResidualBlockId AddResidualBlock(CostFunction* cost_function, | 
|  | LossFunction* loss_function, | 
|  | double* x0, double* x1, double* x2, | 
|  | double* x3, double* x4, double* x5, | 
|  | double* x6); | 
|  | ResidualBlockId AddResidualBlock(CostFunction* cost_function, | 
|  | LossFunction* loss_function, | 
|  | double* x0, double* x1, double* x2, | 
|  | double* x3, double* x4, double* x5, | 
|  | double* x6, double* x7); | 
|  | ResidualBlockId AddResidualBlock(CostFunction* cost_function, | 
|  | LossFunction* loss_function, | 
|  | double* x0, double* x1, double* x2, | 
|  | double* x3, double* x4, double* x5, | 
|  | double* x6, double* x7, double* x8); | 
|  | ResidualBlockId AddResidualBlock(CostFunction* cost_function, | 
|  | LossFunction* loss_function, | 
|  | double* x0, double* x1, double* x2, | 
|  | double* x3, double* x4, double* x5, | 
|  | double* x6, double* x7, double* x8, | 
|  | double* x9); | 
|  |  | 
|  | // Add a parameter block with appropriate size to the problem. | 
|  | // Repeated calls with the same arguments are ignored. Repeated | 
|  | // calls with the same double pointer but a different size results | 
|  | // in undefined behaviour. | 
|  | void AddParameterBlock(double* values, int size); | 
|  |  | 
|  | // Add a parameter block with appropriate size and parameterization | 
|  | // to the problem. Repeated calls with the same arguments are | 
|  | // ignored. Repeated calls with the same double pointer but a | 
|  | // different size results in undefined behaviour. | 
|  | void AddParameterBlock(double* values, | 
|  | int size, | 
|  | LocalParameterization* local_parameterization); | 
|  |  | 
|  | // Remove a parameter block from the problem. The parameterization of the | 
|  | // parameter block, if it exists, will persist until the deletion of the | 
|  | // problem (similar to cost/loss functions in residual block removal). Any | 
|  | // residual blocks that depend on the parameter are also removed, as | 
|  | // described above in RemoveResidualBlock(). | 
|  | // | 
|  | // If Problem::Options::enable_fast_removal is true, then the | 
|  | // removal is fast (almost constant time). Otherwise, removing a parameter | 
|  | // block will incur a scan of the entire Problem object. | 
|  | // | 
|  | // WARNING: Removing a residual or parameter block will destroy the implicit | 
|  | // ordering, rendering the jacobian or residuals returned from the solver | 
|  | // uninterpretable. If you depend on the evaluated jacobian, do not use | 
|  | // remove! This may change in a future release. | 
|  | void RemoveParameterBlock(double* values); | 
|  |  | 
|  | // Remove a residual block from the problem. Any parameters that the residual | 
|  | // block depends on are not removed. The cost and loss functions for the | 
|  | // residual block will not get deleted immediately; won't happen until the | 
|  | // problem itself is deleted. | 
|  | // | 
|  | // WARNING: Removing a residual or parameter block will destroy the implicit | 
|  | // ordering, rendering the jacobian or residuals returned from the solver | 
|  | // uninterpretable. If you depend on the evaluated jacobian, do not use | 
|  | // remove! This may change in a future release. | 
|  | void RemoveResidualBlock(ResidualBlockId residual_block); | 
|  |  | 
|  | // Hold the indicated parameter block constant during optimization. | 
|  | void SetParameterBlockConstant(double* values); | 
|  |  | 
|  | // Allow the indicated parameter block to vary during optimization. | 
|  | void SetParameterBlockVariable(double* values); | 
|  |  | 
|  | // Returns true if a parameter block is set constant, and false otherwise. | 
|  | bool IsParameterBlockConstant(double* values) const; | 
|  |  | 
|  | // Set the local parameterization for one of the parameter blocks. | 
|  | // The local_parameterization is owned by the Problem by default. It | 
|  | // is acceptable to set the same parameterization for multiple | 
|  | // parameters; the destructor is careful to delete local | 
|  | // parameterizations only once. The local parameterization can only | 
|  | // be set once per parameter, and cannot be changed once set. | 
|  | void SetParameterization(double* values, | 
|  | LocalParameterization* local_parameterization); | 
|  |  | 
|  | // Get the local parameterization object associated with this | 
|  | // parameter block. If there is no parameterization object | 
|  | // associated then NULL is returned. | 
|  | const LocalParameterization* GetParameterization(double* values) const; | 
|  |  | 
|  | // Set the lower/upper bound for the parameter with position "index". | 
|  | void SetParameterLowerBound(double* values, int index, double lower_bound); | 
|  | void SetParameterUpperBound(double* values, int index, double upper_bound); | 
|  |  | 
|  | // Number of parameter blocks in the problem. Always equals | 
|  | // parameter_blocks().size() and parameter_block_sizes().size(). | 
|  | int NumParameterBlocks() const; | 
|  |  | 
|  | // The size of the parameter vector obtained by summing over the | 
|  | // sizes of all the parameter blocks. | 
|  | int NumParameters() const; | 
|  |  | 
|  | // Number of residual blocks in the problem. Always equals | 
|  | // residual_blocks().size(). | 
|  | int NumResidualBlocks() const; | 
|  |  | 
|  | // The size of the residual vector obtained by summing over the | 
|  | // sizes of all of the residual blocks. | 
|  | int NumResiduals() const; | 
|  |  | 
|  | // The size of the parameter block. | 
|  | int ParameterBlockSize(const double* values) const; | 
|  |  | 
|  | // The size of local parameterization for the parameter block. If | 
|  | // there is no local parameterization associated with this parameter | 
|  | // block, then ParameterBlockLocalSize = ParameterBlockSize. | 
|  | int ParameterBlockLocalSize(const double* values) const; | 
|  |  | 
|  | // Is the given parameter block present in this problem or not? | 
|  | bool HasParameterBlock(const double* values) const; | 
|  |  | 
|  | // Fills the passed parameter_blocks vector with pointers to the | 
|  | // parameter blocks currently in the problem. After this call, | 
|  | // parameter_block.size() == NumParameterBlocks. | 
|  | void GetParameterBlocks(std::vector<double*>* parameter_blocks) const; | 
|  |  | 
|  | // Fills the passed residual_blocks vector with pointers to the | 
|  | // residual blocks currently in the problem. After this call, | 
|  | // residual_blocks.size() == NumResidualBlocks. | 
|  | void GetResidualBlocks(std::vector<ResidualBlockId>* residual_blocks) const; | 
|  |  | 
|  | // Get all the parameter blocks that depend on the given residual block. | 
|  | void GetParameterBlocksForResidualBlock( | 
|  | const ResidualBlockId residual_block, | 
|  | std::vector<double*>* parameter_blocks) const; | 
|  |  | 
|  | // Get the CostFunction for the given residual block. | 
|  | const CostFunction* GetCostFunctionForResidualBlock( | 
|  | const ResidualBlockId residual_block) const; | 
|  |  | 
|  | // Get the LossFunction for the given residual block. Returns NULL | 
|  | // if no loss function is associated with this residual block. | 
|  | const LossFunction* GetLossFunctionForResidualBlock( | 
|  | const ResidualBlockId residual_block) const; | 
|  |  | 
|  | // Get all the residual blocks that depend on the given parameter block. | 
|  | // | 
|  | // If Problem::Options::enable_fast_removal is true, then | 
|  | // getting the residual blocks is fast and depends only on the number of | 
|  | // residual blocks. Otherwise, getting the residual blocks for a parameter | 
|  | // block will incur a scan of the entire Problem object. | 
|  | void GetResidualBlocksForParameterBlock( | 
|  | const double* values, | 
|  | std::vector<ResidualBlockId>* residual_blocks) const; | 
|  |  | 
|  | // Options struct to control Problem::Evaluate. | 
|  | struct EvaluateOptions { | 
|  | // The set of parameter blocks for which evaluation should be | 
|  | // performed. This vector determines the order that parameter | 
|  | // blocks occur in the gradient vector and in the columns of the | 
|  | // jacobian matrix. If parameter_blocks is empty, then it is | 
|  | // assumed to be equal to vector containing ALL the parameter | 
|  | // blocks.  Generally speaking the parameter blocks will occur in | 
|  | // the order in which they were added to the problem. But, this | 
|  | // may change if the user removes any parameter blocks from the | 
|  | // problem. | 
|  | // | 
|  | // NOTE: This vector should contain the same pointers as the ones | 
|  | // used to add parameter blocks to the Problem. These parameter | 
|  | // block should NOT point to new memory locations. Bad things will | 
|  | // happen otherwise. | 
|  | std::vector<double*> parameter_blocks; | 
|  |  | 
|  | // The set of residual blocks to evaluate. This vector determines | 
|  | // the order in which the residuals occur, and how the rows of the | 
|  | // jacobian are ordered. If residual_blocks is empty, then it is | 
|  | // assumed to be equal to the vector containing ALL the residual | 
|  | // blocks. Generally speaking the residual blocks will occur in | 
|  | // the order in which they were added to the problem. But, this | 
|  | // may change if the user removes any residual blocks from the | 
|  | // problem. | 
|  | std::vector<ResidualBlockId> residual_blocks; | 
|  |  | 
|  | // Even though the residual blocks in the problem may contain loss | 
|  | // functions, setting apply_loss_function to false will turn off | 
|  | // the application of the loss function to the output of the cost | 
|  | // function. This is of use for example if the user wishes to | 
|  | // analyse the solution quality by studying the distribution of | 
|  | // residuals before and after the solve. | 
|  | bool apply_loss_function = true; | 
|  |  | 
|  | int num_threads = 1; | 
|  | }; | 
|  |  | 
|  | // Evaluate Problem. Any of the output pointers can be NULL. Which | 
|  | // residual blocks and parameter blocks are used is controlled by | 
|  | // the EvaluateOptions struct above. | 
|  | // | 
|  | // Note 1: The evaluation will use the values stored in the memory | 
|  | // locations pointed to by the parameter block pointers used at the | 
|  | // time of the construction of the problem. i.e., | 
|  | // | 
|  | //   Problem problem; | 
|  | //   double x = 1; | 
|  | //   problem.AddResidualBlock(new MyCostFunction, NULL, &x); | 
|  | // | 
|  | //   double cost = 0.0; | 
|  | //   problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL); | 
|  | // | 
|  | // The cost is evaluated at x = 1. If you wish to evaluate the | 
|  | // problem at x = 2, then | 
|  | // | 
|  | //    x = 2; | 
|  | //    problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL); | 
|  | // | 
|  | // is the way to do so. | 
|  | // | 
|  | // Note 2: If no local parameterizations are used, then the size of | 
|  | // the gradient vector (and the number of columns in the jacobian) | 
|  | // is the sum of the sizes of all the parameter blocks. If a | 
|  | // parameter block has a local parameterization, then it contributes | 
|  | // "LocalSize" entries to the gradient vector (and the number of | 
|  | // columns in the jacobian). | 
|  | // | 
|  | // Note 3: This function cannot be called while the problem is being | 
|  | // solved, for example it cannot be called from an IterationCallback | 
|  | // at the end of an iteration during a solve. | 
|  | bool Evaluate(const EvaluateOptions& options, | 
|  | double* cost, | 
|  | std::vector<double>* residuals, | 
|  | std::vector<double>* gradient, | 
|  | CRSMatrix* jacobian); | 
|  |  | 
|  | private: | 
|  | friend class Solver; | 
|  | friend class Covariance; | 
|  | std::unique_ptr<internal::ProblemImpl> problem_impl_; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #include "ceres/internal/reenable_warnings.h" | 
|  |  | 
|  | #endif  // CERES_PUBLIC_PROBLEM_H_ |