| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/compressed_row_sparse_matrix.h" | 
 |  | 
 | #include <memory> | 
 | #include <numeric> | 
 | #include "ceres/casts.h" | 
 | #include "ceres/crs_matrix.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_least_squares_problems.h" | 
 | #include "ceres/random.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "glog/logging.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | #include "Eigen/SparseCore" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | using std::vector; | 
 |  | 
 | void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) { | 
 |   EXPECT_EQ(a->num_rows(), b->num_rows()); | 
 |   EXPECT_EQ(a->num_cols(), b->num_cols()); | 
 |  | 
 |   int num_rows = a->num_rows(); | 
 |   int num_cols = a->num_cols(); | 
 |  | 
 |   for (int i = 0; i < num_cols; ++i) { | 
 |     Vector x = Vector::Zero(num_cols); | 
 |     x(i) = 1.0; | 
 |  | 
 |     Vector y_a = Vector::Zero(num_rows); | 
 |     Vector y_b = Vector::Zero(num_rows); | 
 |  | 
 |     a->RightMultiply(x.data(), y_a.data()); | 
 |     b->RightMultiply(x.data(), y_b.data()); | 
 |  | 
 |     EXPECT_EQ((y_a - y_b).norm(), 0); | 
 |   } | 
 | } | 
 |  | 
 | class CompressedRowSparseMatrixTest : public ::testing::Test { | 
 |  protected: | 
 |   virtual void SetUp() { | 
 |     std::unique_ptr<LinearLeastSquaresProblem> problem( | 
 |         CreateLinearLeastSquaresProblemFromId(1)); | 
 |  | 
 |     CHECK_NOTNULL(problem.get()); | 
 |  | 
 |     tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); | 
 |     crsm.reset(CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm)); | 
 |  | 
 |     num_rows = tsm->num_rows(); | 
 |     num_cols = tsm->num_cols(); | 
 |  | 
 |     vector<int>* row_blocks = crsm->mutable_row_blocks(); | 
 |     row_blocks->resize(num_rows); | 
 |     std::fill(row_blocks->begin(), row_blocks->end(), 1); | 
 |  | 
 |     vector<int>* col_blocks = crsm->mutable_col_blocks(); | 
 |     col_blocks->resize(num_cols); | 
 |     std::fill(col_blocks->begin(), col_blocks->end(), 1); | 
 |   } | 
 |  | 
 |   int num_rows; | 
 |   int num_cols; | 
 |  | 
 |   std::unique_ptr<TripletSparseMatrix> tsm; | 
 |   std::unique_ptr<CompressedRowSparseMatrix> crsm; | 
 | }; | 
 |  | 
 | TEST_F(CompressedRowSparseMatrixTest, Scale) { | 
 |   Vector scale(num_cols); | 
 |   for (int i = 0; i < num_cols; ++i) { | 
 |     scale(i) = i + 1; | 
 |   } | 
 |  | 
 |   tsm->ScaleColumns(scale.data()); | 
 |   crsm->ScaleColumns(scale.data()); | 
 |   CompareMatrices(tsm.get(), crsm.get()); | 
 | } | 
 |  | 
 | TEST_F(CompressedRowSparseMatrixTest, DeleteRows) { | 
 |   // Clear the row and column blocks as these are purely scalar tests. | 
 |   crsm->mutable_row_blocks()->clear(); | 
 |   crsm->mutable_col_blocks()->clear(); | 
 |  | 
 |   for (int i = 0; i < num_rows; ++i) { | 
 |     tsm->Resize(num_rows - i, num_cols); | 
 |     crsm->DeleteRows(crsm->num_rows() - tsm->num_rows()); | 
 |     CompareMatrices(tsm.get(), crsm.get()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(CompressedRowSparseMatrixTest, AppendRows) { | 
 |   // Clear the row and column blocks as these are purely scalar tests. | 
 |   crsm->mutable_row_blocks()->clear(); | 
 |   crsm->mutable_col_blocks()->clear(); | 
 |  | 
 |   for (int i = 0; i < num_rows; ++i) { | 
 |     TripletSparseMatrix tsm_appendage(*tsm); | 
 |     tsm_appendage.Resize(i, num_cols); | 
 |  | 
 |     tsm->AppendRows(tsm_appendage); | 
 |     std::unique_ptr<CompressedRowSparseMatrix> crsm_appendage( | 
 |         CompressedRowSparseMatrix::FromTripletSparseMatrix(tsm_appendage)); | 
 |  | 
 |     crsm->AppendRows(*crsm_appendage); | 
 |     CompareMatrices(tsm.get(), crsm.get()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(CompressedRowSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) { | 
 |   int num_diagonal_rows = crsm->num_cols(); | 
 |  | 
 |   std::unique_ptr<double[]> diagonal(new double[num_diagonal_rows]); | 
 |   for (int i = 0; i < num_diagonal_rows; ++i) { | 
 |     diagonal[i] = i; | 
 |   } | 
 |  | 
 |   vector<int> row_and_column_blocks; | 
 |   row_and_column_blocks.push_back(1); | 
 |   row_and_column_blocks.push_back(2); | 
 |   row_and_column_blocks.push_back(2); | 
 |  | 
 |   const vector<int> pre_row_blocks = crsm->row_blocks(); | 
 |   const vector<int> pre_col_blocks = crsm->col_blocks(); | 
 |  | 
 |   std::unique_ptr<CompressedRowSparseMatrix> appendage( | 
 |       CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( | 
 |           diagonal.get(), row_and_column_blocks)); | 
 |  | 
 |   crsm->AppendRows(*appendage); | 
 |  | 
 |   const vector<int> post_row_blocks = crsm->row_blocks(); | 
 |   const vector<int> post_col_blocks = crsm->col_blocks(); | 
 |  | 
 |   vector<int> expected_row_blocks = pre_row_blocks; | 
 |   expected_row_blocks.insert(expected_row_blocks.end(), | 
 |                              row_and_column_blocks.begin(), | 
 |                              row_and_column_blocks.end()); | 
 |  | 
 |   vector<int> expected_col_blocks = pre_col_blocks; | 
 |  | 
 |   EXPECT_EQ(expected_row_blocks, crsm->row_blocks()); | 
 |   EXPECT_EQ(expected_col_blocks, crsm->col_blocks()); | 
 |  | 
 |   crsm->DeleteRows(num_diagonal_rows); | 
 |   EXPECT_EQ(crsm->row_blocks(), pre_row_blocks); | 
 |   EXPECT_EQ(crsm->col_blocks(), pre_col_blocks); | 
 | } | 
 |  | 
 | TEST_F(CompressedRowSparseMatrixTest, ToDenseMatrix) { | 
 |   Matrix tsm_dense; | 
 |   Matrix crsm_dense; | 
 |  | 
 |   tsm->ToDenseMatrix(&tsm_dense); | 
 |   crsm->ToDenseMatrix(&crsm_dense); | 
 |  | 
 |   EXPECT_EQ((tsm_dense - crsm_dense).norm(), 0.0); | 
 | } | 
 |  | 
 | TEST_F(CompressedRowSparseMatrixTest, ToCRSMatrix) { | 
 |   CRSMatrix crs_matrix; | 
 |   crsm->ToCRSMatrix(&crs_matrix); | 
 |   EXPECT_EQ(crsm->num_rows(), crs_matrix.num_rows); | 
 |   EXPECT_EQ(crsm->num_cols(), crs_matrix.num_cols); | 
 |   EXPECT_EQ(crsm->num_rows() + 1, crs_matrix.rows.size()); | 
 |   EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.cols.size()); | 
 |   EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.values.size()); | 
 |  | 
 |   for (int i = 0; i < crsm->num_rows() + 1; ++i) { | 
 |     EXPECT_EQ(crsm->rows()[i], crs_matrix.rows[i]); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < crsm->num_nonzeros(); ++i) { | 
 |     EXPECT_EQ(crsm->cols()[i], crs_matrix.cols[i]); | 
 |     EXPECT_EQ(crsm->values()[i], crs_matrix.values[i]); | 
 |   } | 
 | } | 
 |  | 
 | TEST(CompressedRowSparseMatrix, CreateBlockDiagonalMatrix) { | 
 |   vector<int> blocks; | 
 |   blocks.push_back(1); | 
 |   blocks.push_back(2); | 
 |   blocks.push_back(2); | 
 |  | 
 |   Vector diagonal(5); | 
 |   for (int i = 0; i < 5; ++i) { | 
 |     diagonal(i) = i + 1; | 
 |   } | 
 |  | 
 |   std::unique_ptr<CompressedRowSparseMatrix> matrix( | 
 |       CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(diagonal.data(), | 
 |                                                            blocks)); | 
 |  | 
 |   EXPECT_EQ(matrix->num_rows(), 5); | 
 |   EXPECT_EQ(matrix->num_cols(), 5); | 
 |   EXPECT_EQ(matrix->num_nonzeros(), 9); | 
 |   EXPECT_EQ(blocks, matrix->row_blocks()); | 
 |   EXPECT_EQ(blocks, matrix->col_blocks()); | 
 |  | 
 |   Vector x(5); | 
 |   Vector y(5); | 
 |  | 
 |   x.setOnes(); | 
 |   y.setZero(); | 
 |   matrix->RightMultiply(x.data(), y.data()); | 
 |   for (int i = 0; i < diagonal.size(); ++i) { | 
 |     EXPECT_EQ(y[i], diagonal[i]); | 
 |   } | 
 |  | 
 |   y.setZero(); | 
 |   matrix->LeftMultiply(x.data(), y.data()); | 
 |   for (int i = 0; i < diagonal.size(); ++i) { | 
 |     EXPECT_EQ(y[i], diagonal[i]); | 
 |   } | 
 |  | 
 |   Matrix dense; | 
 |   matrix->ToDenseMatrix(&dense); | 
 |   EXPECT_EQ((dense.diagonal() - diagonal).norm(), 0.0); | 
 | } | 
 |  | 
 | TEST(CompressedRowSparseMatrix, Transpose) { | 
 |   //  0  1  0  2  3  0 | 
 |   //  4  6  7  0  0  8 | 
 |   //  9 10  0 11 12  0 | 
 |   // 13  0 14 15  9  0 | 
 |   //  0 16 17  0  0  0 | 
 |  | 
 |   // Block structure: | 
 |   //  A  A  A  A  B  B | 
 |   //  A  A  A  A  B  B | 
 |   //  A  A  A  A  B  B | 
 |   //  C  C  C  C  D  D | 
 |   //  C  C  C  C  D  D | 
 |   //  C  C  C  C  D  D | 
 |  | 
 |   CompressedRowSparseMatrix matrix(5, 6, 30); | 
 |   int* rows = matrix.mutable_rows(); | 
 |   int* cols = matrix.mutable_cols(); | 
 |   double* values = matrix.mutable_values(); | 
 |   matrix.mutable_row_blocks()->push_back(3); | 
 |   matrix.mutable_row_blocks()->push_back(3); | 
 |   matrix.mutable_col_blocks()->push_back(4); | 
 |   matrix.mutable_col_blocks()->push_back(2); | 
 |  | 
 |   rows[0] = 0; | 
 |   cols[0] = 1; | 
 |   cols[1] = 3; | 
 |   cols[2] = 4; | 
 |  | 
 |   rows[1] = 3; | 
 |   cols[3] = 0; | 
 |   cols[4] = 1; | 
 |   cols[5] = 2; | 
 |   cols[6] = 5; | 
 |  | 
 |   rows[2] = 7; | 
 |   cols[7] = 0; | 
 |   cols[8] = 1; | 
 |   cols[9] = 3; | 
 |   cols[10] = 4; | 
 |  | 
 |   rows[3] = 11; | 
 |   cols[11] = 0; | 
 |   cols[12] = 2; | 
 |   cols[13] = 3; | 
 |   cols[14] = 4; | 
 |  | 
 |   rows[4] = 15; | 
 |   cols[15] = 1; | 
 |   cols[16] = 2; | 
 |   rows[5] = 17; | 
 |  | 
 |   std::copy(values, values + 17, cols); | 
 |  | 
 |   std::unique_ptr<CompressedRowSparseMatrix> transpose(matrix.Transpose()); | 
 |  | 
 |   ASSERT_EQ(transpose->row_blocks().size(), matrix.col_blocks().size()); | 
 |   for (int i = 0; i < transpose->row_blocks().size(); ++i) { | 
 |     EXPECT_EQ(transpose->row_blocks()[i], matrix.col_blocks()[i]); | 
 |   } | 
 |  | 
 |   ASSERT_EQ(transpose->col_blocks().size(), matrix.row_blocks().size()); | 
 |   for (int i = 0; i < transpose->col_blocks().size(); ++i) { | 
 |     EXPECT_EQ(transpose->col_blocks()[i], matrix.row_blocks()[i]); | 
 |   } | 
 |  | 
 |   Matrix dense_matrix; | 
 |   matrix.ToDenseMatrix(&dense_matrix); | 
 |  | 
 |   Matrix dense_transpose; | 
 |   transpose->ToDenseMatrix(&dense_transpose); | 
 |   EXPECT_NEAR((dense_matrix - dense_transpose.transpose()).norm(), 0.0, 1e-14); | 
 | } | 
 |  | 
 | TEST(CompressedRowSparseMatrix, FromTripletSparseMatrix) { | 
 |   TripletSparseMatrix::RandomMatrixOptions options; | 
 |   options.num_rows = 5; | 
 |   options.num_cols = 7; | 
 |   options.density = 0.5; | 
 |  | 
 |   const int kNumTrials = 10; | 
 |   for (int i = 0; i < kNumTrials; ++i) { | 
 |     std::unique_ptr<TripletSparseMatrix> tsm( | 
 |         TripletSparseMatrix::CreateRandomMatrix(options)); | 
 |     std::unique_ptr<CompressedRowSparseMatrix> crsm( | 
 |         CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm)); | 
 |  | 
 |     Matrix expected; | 
 |     tsm->ToDenseMatrix(&expected); | 
 |     Matrix actual; | 
 |     crsm->ToDenseMatrix(&actual); | 
 |     EXPECT_NEAR((expected - actual).norm() / actual.norm(), | 
 |                 0.0, | 
 |                 std::numeric_limits<double>::epsilon()) | 
 |         << "\nexpected: \n" | 
 |         << expected << "\nactual: \n" | 
 |         << actual; | 
 |   } | 
 | } | 
 |  | 
 | TEST(CompressedRowSparseMatrix, FromTripletSparseMatrixTransposed) { | 
 |   TripletSparseMatrix::RandomMatrixOptions options; | 
 |   options.num_rows = 5; | 
 |   options.num_cols = 7; | 
 |   options.density = 0.5; | 
 |  | 
 |   const int kNumTrials = 10; | 
 |   for (int i = 0; i < kNumTrials; ++i) { | 
 |     std::unique_ptr<TripletSparseMatrix> tsm( | 
 |         TripletSparseMatrix::CreateRandomMatrix(options)); | 
 |     std::unique_ptr<CompressedRowSparseMatrix> crsm( | 
 |         CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed(*tsm)); | 
 |  | 
 |     Matrix tmp; | 
 |     tsm->ToDenseMatrix(&tmp); | 
 |     Matrix expected = tmp.transpose(); | 
 |     Matrix actual; | 
 |     crsm->ToDenseMatrix(&actual); | 
 |     EXPECT_NEAR((expected - actual).norm() / actual.norm(), | 
 |                 0.0, | 
 |                 std::numeric_limits<double>::epsilon()) | 
 |         << "\nexpected: \n" | 
 |         << expected << "\nactual: \n" | 
 |         << actual; | 
 |   } | 
 | } | 
 |  | 
 | typedef ::testing::tuple<CompressedRowSparseMatrix::StorageType> Param; | 
 |  | 
 | std::string ParamInfoToString(testing::TestParamInfo<Param> info) { | 
 |   if (::testing::get<0>(info.param) == | 
 |       CompressedRowSparseMatrix::UPPER_TRIANGULAR) { | 
 |     return "UPPER"; | 
 |   } | 
 |  | 
 |   if (::testing::get<0>(info.param) == | 
 |       CompressedRowSparseMatrix::LOWER_TRIANGULAR) { | 
 |     return "LOWER"; | 
 |   } | 
 |  | 
 |   return "UNSYMMETRIC"; | 
 | } | 
 |  | 
 | class RightMultiplyTest : public ::testing::TestWithParam<Param> {}; | 
 |  | 
 | TEST_P(RightMultiplyTest, _) { | 
 |   const int kMinNumBlocks = 1; | 
 |   const int kMaxNumBlocks = 10; | 
 |   const int kMinBlockSize = 1; | 
 |   const int kMaxBlockSize = 5; | 
 |   const int kNumTrials = 10; | 
 |  | 
 |   for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks; | 
 |        ++num_blocks) { | 
 |     for (int trial = 0; trial < kNumTrials; ++trial) { | 
 |       Param param = GetParam(); | 
 |       CompressedRowSparseMatrix::RandomMatrixOptions options; | 
 |       options.num_col_blocks = num_blocks; | 
 |       options.min_col_block_size = kMinBlockSize; | 
 |       options.max_col_block_size = kMaxBlockSize; | 
 |       options.num_row_blocks = 2 * num_blocks; | 
 |       options.min_row_block_size = kMinBlockSize; | 
 |       options.max_row_block_size = kMaxBlockSize; | 
 |       options.block_density = std::max(0.5, RandDouble()); | 
 |       options.storage_type = ::testing::get<0>(param); | 
 |       std::unique_ptr<CompressedRowSparseMatrix> matrix( | 
 |           CompressedRowSparseMatrix::CreateRandomMatrix(options)); | 
 |       const int num_rows = matrix->num_rows(); | 
 |       const int num_cols = matrix->num_cols(); | 
 |  | 
 |       Vector x(num_cols); | 
 |       x.setRandom(); | 
 |  | 
 |       Vector actual_y(num_rows); | 
 |       actual_y.setZero(); | 
 |       matrix->RightMultiply(x.data(), actual_y.data()); | 
 |  | 
 |       Matrix dense; | 
 |       matrix->ToDenseMatrix(&dense); | 
 |       Vector expected_y; | 
 |       if (::testing::get<0>(param) == | 
 |           CompressedRowSparseMatrix::UPPER_TRIANGULAR) { | 
 |         expected_y = dense.selfadjointView<Eigen::Upper>() * x; | 
 |       } else if (::testing::get<0>(param) == | 
 |                  CompressedRowSparseMatrix::LOWER_TRIANGULAR) { | 
 |         expected_y = dense.selfadjointView<Eigen::Lower>() * x; | 
 |       } else { | 
 |         expected_y = dense * x; | 
 |       } | 
 |  | 
 |       ASSERT_NEAR((expected_y - actual_y).norm() / actual_y.norm(), | 
 |                   0.0, | 
 |                   std::numeric_limits<double>::epsilon() * 10) | 
 |           << "\n" | 
 |           << dense | 
 |           << "x:\n" | 
 |           << x.transpose() << "\n" | 
 |           << "expected: \n" << expected_y.transpose() << "\n" | 
 |           << "actual: \n" << actual_y.transpose(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | INSTANTIATE_TEST_CASE_P( | 
 |     CompressedRowSparseMatrix, | 
 |     RightMultiplyTest, | 
 |     ::testing::Values(CompressedRowSparseMatrix::LOWER_TRIANGULAR, | 
 |                       CompressedRowSparseMatrix::UPPER_TRIANGULAR, | 
 |                       CompressedRowSparseMatrix::UNSYMMETRIC), | 
 |     ParamInfoToString); | 
 |  | 
 | class LeftMultiplyTest : public ::testing::TestWithParam<Param> {}; | 
 |  | 
 | TEST_P(LeftMultiplyTest, _) { | 
 |   const int kMinNumBlocks = 1; | 
 |   const int kMaxNumBlocks = 10; | 
 |   const int kMinBlockSize = 1; | 
 |   const int kMaxBlockSize = 5; | 
 |   const int kNumTrials = 10; | 
 |  | 
 |   for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks; | 
 |        ++num_blocks) { | 
 |     for (int trial = 0; trial < kNumTrials; ++trial) { | 
 |       Param param = GetParam(); | 
 |       CompressedRowSparseMatrix::RandomMatrixOptions options; | 
 |       options.num_col_blocks = num_blocks; | 
 |       options.min_col_block_size = kMinBlockSize; | 
 |       options.max_col_block_size = kMaxBlockSize; | 
 |       options.num_row_blocks = 2 * num_blocks; | 
 |       options.min_row_block_size = kMinBlockSize; | 
 |       options.max_row_block_size = kMaxBlockSize; | 
 |       options.block_density = std::max(0.5, RandDouble()); | 
 |       options.storage_type = ::testing::get<0>(param); | 
 |       std::unique_ptr<CompressedRowSparseMatrix> matrix( | 
 |           CompressedRowSparseMatrix::CreateRandomMatrix(options)); | 
 |       const int num_rows = matrix->num_rows(); | 
 |       const int num_cols = matrix->num_cols(); | 
 |  | 
 |       Vector x(num_rows); | 
 |       x.setRandom(); | 
 |  | 
 |       Vector actual_y(num_cols); | 
 |       actual_y.setZero(); | 
 |       matrix->LeftMultiply(x.data(), actual_y.data()); | 
 |  | 
 |       Matrix dense; | 
 |       matrix->ToDenseMatrix(&dense); | 
 |       Vector expected_y; | 
 |       if (::testing::get<0>(param) == | 
 |           CompressedRowSparseMatrix::UPPER_TRIANGULAR) { | 
 |         expected_y = dense.selfadjointView<Eigen::Upper>() * x; | 
 |       } else if (::testing::get<0>(param) == | 
 |                  CompressedRowSparseMatrix::LOWER_TRIANGULAR) { | 
 |         expected_y = dense.selfadjointView<Eigen::Lower>() * x; | 
 |       } else { | 
 |         expected_y = dense.transpose() * x; | 
 |       } | 
 |  | 
 |       ASSERT_NEAR((expected_y - actual_y).norm() / actual_y.norm(), | 
 |                   0.0, | 
 |                   std::numeric_limits<double>::epsilon() * 10) | 
 |           << "\n" | 
 |           << dense | 
 |           << "x\n" | 
 |           << x.transpose() << "\n" | 
 |           << "expected: \n" << expected_y.transpose() << "\n" | 
 |           << "actual: \n" << actual_y.transpose(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | INSTANTIATE_TEST_CASE_P( | 
 |     CompressedRowSparseMatrix, | 
 |     LeftMultiplyTest, | 
 |     ::testing::Values(CompressedRowSparseMatrix::LOWER_TRIANGULAR, | 
 |                       CompressedRowSparseMatrix::UPPER_TRIANGULAR, | 
 |                       CompressedRowSparseMatrix::UNSYMMETRIC), | 
 |     ParamInfoToString); | 
 |  | 
 | class SquaredColumnNormTest : public ::testing::TestWithParam<Param> {}; | 
 |  | 
 | TEST_P(SquaredColumnNormTest, _) { | 
 |   const int kMinNumBlocks = 1; | 
 |   const int kMaxNumBlocks = 10; | 
 |   const int kMinBlockSize = 1; | 
 |   const int kMaxBlockSize = 5; | 
 |   const int kNumTrials = 10; | 
 |  | 
 |   for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks; | 
 |        ++num_blocks) { | 
 |     for (int trial = 0; trial < kNumTrials; ++trial) { | 
 |       Param param = GetParam(); | 
 |       CompressedRowSparseMatrix::RandomMatrixOptions options; | 
 |       options.num_col_blocks = num_blocks; | 
 |       options.min_col_block_size = kMinBlockSize; | 
 |       options.max_col_block_size = kMaxBlockSize; | 
 |       options.num_row_blocks = 2 * num_blocks; | 
 |       options.min_row_block_size = kMinBlockSize; | 
 |       options.max_row_block_size = kMaxBlockSize; | 
 |       options.block_density = std::max(0.5, RandDouble()); | 
 |       options.storage_type = ::testing::get<0>(param); | 
 |       std::unique_ptr<CompressedRowSparseMatrix> matrix( | 
 |           CompressedRowSparseMatrix::CreateRandomMatrix(options)); | 
 |       const int num_cols = matrix->num_cols(); | 
 |  | 
 |       Vector actual(num_cols); | 
 |       actual.setZero(); | 
 |       matrix->SquaredColumnNorm(actual.data()); | 
 |  | 
 |       Matrix dense; | 
 |       matrix->ToDenseMatrix(&dense); | 
 |       Vector expected; | 
 |       if (::testing::get<0>(param) == | 
 |           CompressedRowSparseMatrix::UPPER_TRIANGULAR) { | 
 |         const Matrix full = dense.selfadjointView<Eigen::Upper>(); | 
 |         expected = full.colwise().squaredNorm(); | 
 |       } else if (::testing::get<0>(param) == | 
 |                  CompressedRowSparseMatrix::LOWER_TRIANGULAR) { | 
 |         const Matrix full = dense.selfadjointView<Eigen::Lower>(); | 
 |         expected = full.colwise().squaredNorm(); | 
 |       } else { | 
 |         expected = dense.colwise().squaredNorm(); | 
 |       } | 
 |  | 
 |       ASSERT_NEAR((expected - actual).norm() / actual.norm(), | 
 |                   0.0, | 
 |                   std::numeric_limits<double>::epsilon() * 10) | 
 |           << "\n" | 
 |           << dense | 
 |           << "expected: \n" << expected.transpose() << "\n" | 
 |           << "actual: \n" << actual.transpose(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | INSTANTIATE_TEST_CASE_P( | 
 |     CompressedRowSparseMatrix, | 
 |     SquaredColumnNormTest, | 
 |     ::testing::Values(CompressedRowSparseMatrix::LOWER_TRIANGULAR, | 
 |                       CompressedRowSparseMatrix::UPPER_TRIANGULAR, | 
 |                       CompressedRowSparseMatrix::UNSYMMETRIC), | 
 |     ParamInfoToString); | 
 |  | 
 |  | 
 | // TODO(sameeragarwal) Add tests for the random matrix creation methods. | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |