|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include <memory> | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/levenberg_marquardt_strategy.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/trust_region_strategy.h" | 
|  | #include "glog/logging.h" | 
|  | #include "gmock/gmock.h" | 
|  | #include "gmock/mock-log.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | using testing::AllOf; | 
|  | using testing::AnyNumber; | 
|  | using testing::HasSubstr; | 
|  | using testing::ScopedMockLog; | 
|  | using testing::_; | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | const double kTolerance = 1e-16; | 
|  |  | 
|  | // Linear solver that takes as input a vector and checks that the | 
|  | // caller passes the same vector as LinearSolver::PerSolveOptions.D. | 
|  | class RegularizationCheckingLinearSolver : public DenseSparseMatrixSolver { | 
|  | public: | 
|  | RegularizationCheckingLinearSolver(const int num_cols, const double* diagonal) | 
|  | : num_cols_(num_cols), | 
|  | diagonal_(diagonal) { | 
|  | } | 
|  |  | 
|  | virtual ~RegularizationCheckingLinearSolver() {} | 
|  |  | 
|  | private: | 
|  | virtual LinearSolver::Summary SolveImpl( | 
|  | DenseSparseMatrix* A, | 
|  | const double* b, | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double* x) { | 
|  | CHECK_NOTNULL(per_solve_options.D); | 
|  | for (int i = 0; i < num_cols_; ++i) { | 
|  | EXPECT_NEAR(per_solve_options.D[i], diagonal_[i], kTolerance) | 
|  | << i << " " << per_solve_options.D[i] << " " << diagonal_[i]; | 
|  | } | 
|  | return LinearSolver::Summary(); | 
|  | } | 
|  |  | 
|  | const int num_cols_; | 
|  | const double* diagonal_; | 
|  | }; | 
|  |  | 
|  | TEST(LevenbergMarquardtStrategy, AcceptRejectStepRadiusScaling) { | 
|  | TrustRegionStrategy::Options options; | 
|  | options.initial_radius = 2.0; | 
|  | options.max_radius = 20.0; | 
|  | options.min_lm_diagonal = 1e-8; | 
|  | options.max_lm_diagonal = 1e8; | 
|  |  | 
|  | // We need a non-null pointer here, so anything should do. | 
|  | std::unique_ptr<LinearSolver> linear_solver( | 
|  | new RegularizationCheckingLinearSolver(0, NULL)); | 
|  | options.linear_solver = linear_solver.get(); | 
|  |  | 
|  | LevenbergMarquardtStrategy lms(options); | 
|  | EXPECT_EQ(lms.Radius(), options.initial_radius); | 
|  | lms.StepRejected(0.0); | 
|  | EXPECT_EQ(lms.Radius(), 1.0); | 
|  | lms.StepRejected(-1.0); | 
|  | EXPECT_EQ(lms.Radius(), 0.25); | 
|  | lms.StepAccepted(1.0); | 
|  | EXPECT_EQ(lms.Radius(), 0.25 * 3.0); | 
|  | lms.StepAccepted(1.0); | 
|  | EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0); | 
|  | lms.StepAccepted(0.25); | 
|  | EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125); | 
|  | lms.StepAccepted(1.0); | 
|  | EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125 * 3.0); | 
|  | lms.StepAccepted(1.0); | 
|  | EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125 * 3.0 * 3.0); | 
|  | lms.StepAccepted(1.0); | 
|  | EXPECT_EQ(lms.Radius(), options.max_radius); | 
|  | } | 
|  |  | 
|  | TEST(LevenbergMarquardtStrategy, CorrectDiagonalToLinearSolver) { | 
|  | Matrix jacobian(2, 3); | 
|  | jacobian.setZero(); | 
|  | jacobian(0, 0) = 0.0; | 
|  | jacobian(0, 1) = 1.0; | 
|  | jacobian(1, 1) = 1.0; | 
|  | jacobian(0, 2) = 100.0; | 
|  |  | 
|  | double residual = 1.0; | 
|  | double x[3]; | 
|  | DenseSparseMatrix dsm(jacobian); | 
|  |  | 
|  | TrustRegionStrategy::Options options; | 
|  | options.initial_radius = 2.0; | 
|  | options.max_radius = 20.0; | 
|  | options.min_lm_diagonal = 1e-2; | 
|  | options.max_lm_diagonal = 1e2; | 
|  |  | 
|  | double diagonal[3]; | 
|  | diagonal[0] = options.min_lm_diagonal; | 
|  | diagonal[1] = 2.0; | 
|  | diagonal[2] = options.max_lm_diagonal; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | diagonal[i] = sqrt(diagonal[i] / options.initial_radius); | 
|  | } | 
|  |  | 
|  | RegularizationCheckingLinearSolver linear_solver(3, diagonal); | 
|  | options.linear_solver = &linear_solver; | 
|  |  | 
|  | LevenbergMarquardtStrategy lms(options); | 
|  | TrustRegionStrategy::PerSolveOptions pso; | 
|  |  | 
|  | { | 
|  | ScopedMockLog log; | 
|  | EXPECT_CALL(log, Log(_, _, _)).Times(AnyNumber()); | 
|  | // This using directive is needed get around the fact that there | 
|  | // are versions of glog which are not in the google namespace. | 
|  | using namespace google; | 
|  |  | 
|  | #if defined(_MSC_VER) | 
|  | // Use GLOG_WARNING to support MSVC if GLOG_NO_ABBREVIATED_SEVERITIES | 
|  | // is defined. | 
|  | EXPECT_CALL(log, Log(GLOG_WARNING, _, | 
|  | HasSubstr("Failed to compute a step"))); | 
|  | #else | 
|  | EXPECT_CALL(log, Log(google::WARNING, _, | 
|  | HasSubstr("Failed to compute a step"))); | 
|  | #endif | 
|  |  | 
|  | TrustRegionStrategy::Summary summary = | 
|  | lms.ComputeStep(pso, &dsm, &residual, x); | 
|  | EXPECT_EQ(summary.termination_type, LINEAR_SOLVER_FAILURE); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |