| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2017 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include <memory> | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/casts.h" | 
 | #include "ceres/context_impl.h" | 
 | #include "ceres/linear_least_squares_problems.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | #include "Eigen/Cholesky" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | // TODO(sameeragarwal): These tests needs to be re-written, since | 
 | // SparseNormalCholeskySolver is a composition of two classes now, | 
 | // InnerProductComputer and SparseCholesky. | 
 | // | 
 | // So the test should exercise the composition, rather than the | 
 | // numerics of the solver, which are well covered by tests for those | 
 | // classes. | 
 | class SparseNormalCholeskySolverTest : public ::testing::Test { | 
 |  protected: | 
 |   virtual void SetUp() { | 
 |     std::unique_ptr<LinearLeastSquaresProblem> problem( | 
 |         CreateLinearLeastSquaresProblemFromId(2)); | 
 |  | 
 |     CHECK_NOTNULL(problem.get()); | 
 |     A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release())); | 
 |     b_.reset(problem->b.release()); | 
 |     D_.reset(problem->D.release()); | 
 |   } | 
 |  | 
 |   void TestSolver(const LinearSolver::Options& options, double* D) { | 
 |     Matrix dense_A; | 
 |     A_->ToDenseMatrix(&dense_A); | 
 |     Matrix lhs = dense_A.transpose() * dense_A; | 
 |     if (D != NULL) { | 
 |       lhs += (ConstVectorRef(D, A_->num_cols()).array() * | 
 |               ConstVectorRef(D, A_->num_cols()).array()) | 
 |                  .matrix() | 
 |                  .asDiagonal(); | 
 |     } | 
 |  | 
 |     Vector rhs(A_->num_cols()); | 
 |     rhs.setZero(); | 
 |     A_->LeftMultiply(b_.get(), rhs.data()); | 
 |     Vector expected_solution = lhs.llt().solve(rhs); | 
 |  | 
 |     std::unique_ptr<LinearSolver> solver(LinearSolver::Create(options)); | 
 |     LinearSolver::PerSolveOptions per_solve_options; | 
 |     per_solve_options.D = D; | 
 |     Vector actual_solution(A_->num_cols()); | 
 |     LinearSolver::Summary summary; | 
 |     summary = solver->Solve( | 
 |         A_.get(), b_.get(), per_solve_options, actual_solution.data()); | 
 |  | 
 |     EXPECT_EQ(summary.termination_type, LINEAR_SOLVER_SUCCESS); | 
 |  | 
 |     for (int i = 0; i < A_->num_cols(); ++i) { | 
 |       EXPECT_NEAR(expected_solution(i), actual_solution(i), 1e-8) | 
 |           << "\nExpected: " << expected_solution.transpose() | 
 |           << "\nActual: " << actual_solution.transpose(); | 
 |     } | 
 |   } | 
 |  | 
 |   void TestSolver(const LinearSolver::Options& options) { | 
 |     TestSolver(options, NULL); | 
 |     TestSolver(options, D_.get()); | 
 |   } | 
 |  | 
 |   std::unique_ptr<BlockSparseMatrix> A_; | 
 |   std::unique_ptr<double[]> b_; | 
 |   std::unique_ptr<double[]> D_; | 
 | }; | 
 |  | 
 | #ifndef CERES_NO_SUITESPARSE | 
 | TEST_F(SparseNormalCholeskySolverTest, | 
 |        SparseNormalCholeskyUsingSuiteSparsePreOrdering) { | 
 |   LinearSolver::Options options; | 
 |   options.sparse_linear_algebra_library_type = SUITE_SPARSE; | 
 |   options.type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.use_postordering = false; | 
 |   ContextImpl context; | 
 |   options.context = &context; | 
 |   TestSolver(options); | 
 | } | 
 |  | 
 | TEST_F(SparseNormalCholeskySolverTest, | 
 |        SparseNormalCholeskyUsingSuiteSparsePostOrdering) { | 
 |   LinearSolver::Options options; | 
 |   options.sparse_linear_algebra_library_type = SUITE_SPARSE; | 
 |   options.type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.use_postordering = true; | 
 |   ContextImpl context; | 
 |   options.context = &context; | 
 |   TestSolver(options); | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef CERES_NO_CXSPARSE | 
 | TEST_F(SparseNormalCholeskySolverTest, | 
 |        SparseNormalCholeskyUsingCXSparsePreOrdering) { | 
 |   LinearSolver::Options options; | 
 |   options.sparse_linear_algebra_library_type = CX_SPARSE; | 
 |   options.type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.use_postordering = false; | 
 |   ContextImpl context; | 
 |   options.context = &context; | 
 |   TestSolver(options); | 
 | } | 
 |  | 
 | TEST_F(SparseNormalCholeskySolverTest, | 
 |        SparseNormalCholeskyUsingCXSparsePostOrdering) { | 
 |   LinearSolver::Options options; | 
 |   options.sparse_linear_algebra_library_type = CX_SPARSE; | 
 |   options.type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.use_postordering = true; | 
 |   ContextImpl context; | 
 |   options.context = &context; | 
 |   TestSolver(options); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CERES_USE_EIGEN_SPARSE | 
 | TEST_F(SparseNormalCholeskySolverTest, | 
 |        SparseNormalCholeskyUsingEigenPreOrdering) { | 
 |   LinearSolver::Options options; | 
 |   options.sparse_linear_algebra_library_type = EIGEN_SPARSE; | 
 |   options.type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.use_postordering = false; | 
 |   ContextImpl context; | 
 |   options.context = &context; | 
 |   TestSolver(options); | 
 | } | 
 |  | 
 | TEST_F(SparseNormalCholeskySolverTest, | 
 |        SparseNormalCholeskyUsingEigenPostOrdering) { | 
 |   LinearSolver::Options options; | 
 |   options.sparse_linear_algebra_library_type = EIGEN_SPARSE; | 
 |   options.type = SPARSE_NORMAL_CHOLESKY; | 
 |   options.use_postordering = true; | 
 |   ContextImpl context; | 
 |   options.context = &context; | 
 |   TestSolver(options); | 
 | } | 
 | #endif  // CERES_USE_EIGEN_SPARSE | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |