|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // An iterative solver for solving the Schur complement/reduced camera | 
|  | // linear system that arise in SfM problems. | 
|  |  | 
|  | #ifndef CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_ | 
|  | #define CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_ | 
|  |  | 
|  | #include <memory> | 
|  | #include "ceres/linear_operator.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/partitioned_matrix_view.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | class BlockSparseMatrix; | 
|  |  | 
|  | // This class implements various linear algebraic operations related | 
|  | // to the Schur complement without explicitly forming it. | 
|  | // | 
|  | // | 
|  | // Given a reactangular linear system Ax = b, where | 
|  | // | 
|  | //   A = [E F] | 
|  | // | 
|  | // The normal equations are given by | 
|  | // | 
|  | //   A'Ax = A'b | 
|  | // | 
|  | //  |E'E E'F||y| = |E'b| | 
|  | //  |F'E F'F||z|   |F'b| | 
|  | // | 
|  | // and the Schur complement system is given by | 
|  | // | 
|  | //  [F'F - F'E (E'E)^-1 E'F] z = F'b - F'E (E'E)^-1 E'b | 
|  | // | 
|  | // Now if we wish to solve Ax = b in the least squares sense, one way | 
|  | // is to form this Schur complement system and solve it using | 
|  | // Preconditioned Conjugate Gradients. | 
|  | // | 
|  | // The key operation in a conjugate gradient solver is the evaluation of the | 
|  | // matrix vector product with the Schur complement | 
|  | // | 
|  | //   S = F'F - F'E (E'E)^-1 E'F | 
|  | // | 
|  | // It is straightforward to see that matrix vector products with S can | 
|  | // be evaluated without storing S in memory. Instead, given (E'E)^-1 | 
|  | // (which for our purposes is an easily inverted block diagonal | 
|  | // matrix), it can be done in terms of matrix vector products with E, | 
|  | // F and (E'E)^-1. This class implements this functionality and other | 
|  | // auxilliary bits needed to implement a CG solver on the Schur | 
|  | // complement using the PartitionedMatrixView object. | 
|  | // | 
|  | // THREAD SAFETY: This class is nqot thread safe. In particular, the | 
|  | // RightMultiply (and the LeftMultiply) methods are not thread safe as | 
|  | // they depend on mutable arrays used for the temporaries needed to | 
|  | // compute the product y += Sx; | 
|  | class ImplicitSchurComplement : public LinearOperator { | 
|  | public: | 
|  | // num_eliminate_blocks is the number of E blocks in the matrix | 
|  | // A. | 
|  | // | 
|  | // preconditioner indicates whether the inverse of the matrix F'F | 
|  | // should be computed or not as a preconditioner for the Schur | 
|  | // Complement. | 
|  | // | 
|  | // TODO(sameeragarwal): Get rid of the two bools below and replace | 
|  | // them with enums. | 
|  | explicit ImplicitSchurComplement(const LinearSolver::Options& options); | 
|  | virtual ~ImplicitSchurComplement(); | 
|  |  | 
|  | // Initialize the Schur complement for a linear least squares | 
|  | // problem of the form | 
|  | // | 
|  | //   |A      | x = |b| | 
|  | //   |diag(D)|     |0| | 
|  | // | 
|  | // If D is null, then it is treated as a zero dimensional matrix. It | 
|  | // is important that the matrix A have a BlockStructure object | 
|  | // associated with it and has a block structure that is compatible | 
|  | // with the SchurComplement solver. | 
|  | void Init(const BlockSparseMatrix& A, const double* D, const double* b); | 
|  |  | 
|  | // y += Sx, where S is the Schur complement. | 
|  | virtual void RightMultiply(const double* x, double* y) const; | 
|  |  | 
|  | // The Schur complement is a symmetric positive definite matrix, | 
|  | // thus the left and right multiply operators are the same. | 
|  | virtual void LeftMultiply(const double* x, double* y) const { | 
|  | RightMultiply(x, y); | 
|  | } | 
|  |  | 
|  | // y = (E'E)^-1 (E'b - E'F x). Given an estimate of the solution to | 
|  | // the Schur complement system, this method computes the value of | 
|  | // the e_block variables that were eliminated to form the Schur | 
|  | // complement. | 
|  | void BackSubstitute(const double* x, double* y); | 
|  |  | 
|  | virtual int num_rows() const { return A_->num_cols_f(); } | 
|  | virtual int num_cols() const { return A_->num_cols_f(); } | 
|  | const Vector& rhs()    const { return rhs_;             } | 
|  |  | 
|  | const BlockSparseMatrix* block_diagonal_EtE_inverse() const { | 
|  | return block_diagonal_EtE_inverse_.get(); | 
|  | } | 
|  |  | 
|  | const BlockSparseMatrix* block_diagonal_FtF_inverse() const { | 
|  | return block_diagonal_FtF_inverse_.get(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void AddDiagonalAndInvert(const double* D, BlockSparseMatrix* matrix); | 
|  | void UpdateRhs(); | 
|  |  | 
|  | const LinearSolver::Options& options_; | 
|  |  | 
|  | std::unique_ptr<PartitionedMatrixViewBase> A_; | 
|  | const double* D_; | 
|  | const double* b_; | 
|  |  | 
|  | std::unique_ptr<BlockSparseMatrix> block_diagonal_EtE_inverse_; | 
|  | std::unique_ptr<BlockSparseMatrix> block_diagonal_FtF_inverse_; | 
|  |  | 
|  | Vector rhs_; | 
|  |  | 
|  | // Temporary storage vectors used to implement RightMultiply. | 
|  | mutable Vector tmp_rows_; | 
|  | mutable Vector tmp_e_cols_; | 
|  | mutable Vector tmp_e_cols_2_; | 
|  | mutable Vector tmp_f_cols_; | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_ |