|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2018 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include <string> | 
|  | #include "ceres/iterative_refiner.h" | 
|  |  | 
|  | #include "Eigen/Core" | 
|  | #include "ceres/sparse_cholesky.h" | 
|  | #include "ceres/sparse_matrix.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | IterativeRefiner::IterativeRefiner(const int max_num_iterations) | 
|  | : max_num_iterations_(max_num_iterations) {} | 
|  |  | 
|  | IterativeRefiner::~IterativeRefiner() {} | 
|  |  | 
|  | void IterativeRefiner::Allocate(int num_cols) { | 
|  | residual_.resize(num_cols); | 
|  | correction_.resize(num_cols); | 
|  | lhs_x_solution_.resize(num_cols); | 
|  | } | 
|  |  | 
|  | IterativeRefiner::Summary IterativeRefiner::Refine( | 
|  | const SparseMatrix& lhs, | 
|  | const double* rhs_ptr, | 
|  | SparseCholesky* sparse_cholesky, | 
|  | double* solution_ptr) { | 
|  | Summary summary; | 
|  | const int num_cols = lhs.num_cols(); | 
|  | Allocate(num_cols); | 
|  |  | 
|  | ConstVectorRef rhs(rhs_ptr, num_cols); | 
|  | VectorRef solution(solution_ptr, num_cols); | 
|  |  | 
|  | summary.lhs_max_norm = ConstVectorRef(lhs.values(), lhs.num_nonzeros()) | 
|  | .lpNorm<Eigen::Infinity>(); | 
|  | summary.rhs_max_norm = rhs.lpNorm<Eigen::Infinity>(); | 
|  | summary.solution_max_norm = solution.lpNorm<Eigen::Infinity>(); | 
|  |  | 
|  | // residual = rhs - lhs * solution | 
|  | lhs_x_solution_.setZero(); | 
|  | lhs.RightMultiply(solution_ptr, lhs_x_solution_.data()); | 
|  | residual_ = rhs - lhs_x_solution_; | 
|  | summary.residual_max_norm = residual_.lpNorm<Eigen::Infinity>(); | 
|  |  | 
|  | for (summary.num_iterations = 0; | 
|  | summary.num_iterations < max_num_iterations_; | 
|  | ++summary.num_iterations) { | 
|  | // Check the current solution for convergence. | 
|  | const double kTolerance = 5e-15;  // From Hogg & Scott. | 
|  | // residual_tolerance = (|A| |x| + |b|) * kTolerance; | 
|  | const double residual_tolerance = | 
|  | (summary.lhs_max_norm * summary.solution_max_norm + | 
|  | summary.rhs_max_norm) * | 
|  | kTolerance; | 
|  | VLOG(3) << "Refinement:" | 
|  | << " iter: " << summary.num_iterations | 
|  | << " |A|: " << summary.lhs_max_norm | 
|  | << " |b|: " << summary.rhs_max_norm | 
|  | << " |x|: " << summary.solution_max_norm | 
|  | << " |b - Ax|: " << summary.residual_max_norm | 
|  | << " tol: " << residual_tolerance; | 
|  | // |b - Ax| < (|A| |x| + |b|) * kTolerance; | 
|  | if (summary.residual_max_norm < residual_tolerance) { | 
|  | summary.converged = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Solve for lhs * correction = residual | 
|  | correction_.setZero(); | 
|  | std::string ignored_message; | 
|  | sparse_cholesky->Solve( | 
|  | residual_.data(), correction_.data(), &ignored_message); | 
|  | solution += correction_; | 
|  | summary.solution_max_norm = solution.lpNorm<Eigen::Infinity>(); | 
|  |  | 
|  | // residual = rhs - lhs * solution | 
|  | lhs_x_solution_.setZero(); | 
|  | lhs.RightMultiply(solution_ptr, lhs_x_solution_.data()); | 
|  | residual_ = rhs - lhs_x_solution_; | 
|  | summary.residual_max_norm = residual_.lpNorm<Eigen::Infinity>(); | 
|  | } | 
|  |  | 
|  | return summary; | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |