blob: ed07d9dc6d7ca53b9673bd6861648f047ccb30cb [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
#include "ceres/solver_impl.h"
#include <iostream> // NOLINT
#include <numeric>
#include "ceres/evaluator.h"
#include "ceres/gradient_checking_cost_function.h"
#include "ceres/levenberg_marquardt.h"
#include "ceres/linear_solver.h"
#include "ceres/map_util.h"
#include "ceres/minimizer.h"
#include "ceres/parameter_block.h"
#include "ceres/problem_impl.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/schur_ordering.h"
#include "ceres/stringprintf.h"
#include "ceres/iteration_callback.h"
#include "ceres/problem.h"
namespace ceres {
namespace internal {
namespace {
void EvaluateCostAndResiduals(ProblemImpl* problem_impl,
double* cost,
vector<double>* residuals) {
CHECK_NOTNULL(cost);
Program* program = CHECK_NOTNULL(problem_impl)->mutable_program();
if (residuals != NULL) {
residuals->resize(program->NumResiduals());
program->Evaluate(cost, &(*residuals)[0]);
} else {
program->Evaluate(cost, NULL);
}
}
// Callback for updating the user's parameter blocks. Updates are only
// done if the step is successful.
class StateUpdatingCallback : public IterationCallback {
public:
StateUpdatingCallback(Program* program, double* parameters)
: program_(program), parameters_(parameters) {}
CallbackReturnType operator()(const IterationSummary& summary) {
if (summary.step_is_successful) {
program_->StateVectorToParameterBlocks(parameters_);
program_->CopyParameterBlockStateToUserState();
}
return SOLVER_CONTINUE;
}
private:
Program* program_;
double* parameters_;
};
// Callback for logging the state of the minimizer to STDERR or STDOUT
// depending on the user's preferences and logging level.
class LoggingCallback : public IterationCallback {
public:
explicit LoggingCallback(bool log_to_stdout)
: log_to_stdout_(log_to_stdout) {}
~LoggingCallback() {}
CallbackReturnType operator()(const IterationSummary& summary) {
const char* kReportRowFormat =
"% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e "
"rho:% 3.2e mu:% 3.2e li:% 3d";
string output = StringPrintf(kReportRowFormat,
summary.iteration,
summary.cost,
summary.cost_change,
summary.gradient_max_norm,
summary.step_norm,
summary.relative_decrease,
summary.mu,
summary.linear_solver_iterations);
if (log_to_stdout_) {
cout << output << endl;
} else {
VLOG(1) << output;
}
return SOLVER_CONTINUE;
}
private:
const bool log_to_stdout_;
};
} // namespace
void SolverImpl::Minimize(const Solver::Options& options,
Program* program,
Evaluator* evaluator,
LinearSolver* linear_solver,
double* initial_parameters,
double* final_parameters,
Solver::Summary* summary) {
Minimizer::Options minimizer_options(options);
LoggingCallback logging_callback(options.minimizer_progress_to_stdout);
if (options.logging_type != SILENT) {
minimizer_options.callbacks.push_back(&logging_callback);
}
StateUpdatingCallback updating_callback(program, initial_parameters);
if (options.update_state_every_iteration) {
minimizer_options.callbacks.push_back(&updating_callback);
}
LevenbergMarquardt levenberg_marquardt;
time_t start_minimizer_time_seconds = time(NULL);
levenberg_marquardt.Minimize(minimizer_options,
evaluator,
linear_solver,
initial_parameters,
final_parameters,
summary);
summary->minimizer_time_in_seconds =
time(NULL) - start_minimizer_time_seconds;
}
void SolverImpl::Solve(const Solver::Options& original_options,
Problem* problem,
Solver::Summary* summary) {
Solver::Options options(original_options);
#ifndef CERES_USE_OPENMP
if (options.num_threads > 1) {
LOG(WARNING)
<< "OpenMP support is not compiled into this binary; "
<< "only options.num_threads=1 is supported. Switching"
<< "to single threaded mode.";
options.num_threads = 1;
}
if (options.num_linear_solver_threads > 1) {
LOG(WARNING)
<< "OpenMP support is not compiled into this binary; "
<< "only options.num_linear_solver_threads=1 is supported. Switching"
<< "to single threaded mode.";
options.num_linear_solver_threads = 1;
}
#endif
// Reset the summary object to its default values;
*CHECK_NOTNULL(summary) = Solver::Summary();
summary->linear_solver_type_given = options.linear_solver_type;
summary->num_eliminate_blocks_given = original_options.num_eliminate_blocks;
summary->num_threads_given = original_options.num_threads;
summary->num_linear_solver_threads_given =
original_options.num_linear_solver_threads;
summary->ordering_type = original_options.ordering_type;
ProblemImpl* problem_impl = CHECK_NOTNULL(problem)->problem_impl_.get();
summary->num_parameter_blocks = problem_impl->NumParameterBlocks();
summary->num_parameters = problem_impl->NumParameters();
summary->num_residual_blocks = problem_impl->NumResidualBlocks();
summary->num_residuals = problem_impl->NumResiduals();
summary->num_threads_used = options.num_threads;
// Evaluate the initial cost and residual vector (if needed). The
// initial cost needs to be computed on the original unpreprocessed
// problem, as it is used to determine the value of the "fixed" part
// of the objective function after the problem has undergone
// reduction. Also the initial residuals are in the order in which
// the user added the ResidualBlocks to the optimization problem.
EvaluateCostAndResiduals(problem_impl,
&summary->initial_cost,
options.return_initial_residuals
? &summary->initial_residuals
: NULL);
// If the user requests gradient checking, construct a new
// ProblemImpl by wrapping the CostFunctions of problem_impl inside
// GradientCheckingCostFunction and replacing problem_impl with
// gradient_checking_problem_impl.
scoped_ptr<ProblemImpl> gradient_checking_problem_impl;
if (options.check_gradients) {
VLOG(1) << "Checking Gradients";
gradient_checking_problem_impl.reset(
CreateGradientCheckingProblemImpl(
problem_impl,
options.numeric_derivative_relative_step_size,
options.gradient_check_relative_precision));
// From here on, problem_impl will point to the GradientChecking version.
problem_impl = gradient_checking_problem_impl.get();
}
// Create the three objects needed to minimize: the transformed program, the
// evaluator, and the linear solver.
scoped_ptr<Program> reduced_program(
CreateReducedProgram(&options, problem_impl, &summary->error));
if (reduced_program == NULL) {
return;
}
summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks();
summary->num_parameters_reduced = reduced_program->NumParameters();
summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks();
summary->num_residuals_reduced = reduced_program->NumResiduals();
scoped_ptr<LinearSolver>
linear_solver(CreateLinearSolver(&options, &summary->error));
summary->linear_solver_type_used = options.linear_solver_type;
summary->preconditioner_type = options.preconditioner_type;
summary->num_eliminate_blocks_used = options.num_eliminate_blocks;
summary->num_linear_solver_threads_used = options.num_linear_solver_threads;
if (linear_solver == NULL) {
return;
}
if (!MaybeReorderResidualBlocks(options,
reduced_program.get(),
&summary->error)) {
return;
}
scoped_ptr<Evaluator> evaluator(
CreateEvaluator(options, reduced_program.get(), &summary->error));
if (evaluator == NULL) {
return;
}
// The optimizer works on contiguous parameter vectors; allocate some.
Vector initial_parameters(reduced_program->NumParameters());
Vector optimized_parameters(reduced_program->NumParameters());
// Collect the discontiguous parameters into a contiguous state vector.
reduced_program->ParameterBlocksToStateVector(&initial_parameters[0]);
// Run the optimization.
Minimize(options,
reduced_program.get(),
evaluator.get(),
linear_solver.get(),
initial_parameters.data(),
optimized_parameters.data(),
summary);
// If the user aborted mid-optimization or the optimization
// terminated because of a numerical failure, then return without
// updating user state.
if (summary->termination_type == USER_ABORT ||
summary->termination_type == NUMERICAL_FAILURE) {
return;
}
// Push the contiguous optimized parameters back to the user's parameters.
reduced_program->StateVectorToParameterBlocks(&optimized_parameters[0]);
reduced_program->CopyParameterBlockStateToUserState();
// Return the final cost and residuals for the original problem.
EvaluateCostAndResiduals(problem->problem_impl_.get(),
&summary->final_cost,
options.return_final_residuals
? &summary->final_residuals
: NULL);
// Stick a fork in it, we're done.
return;
}
// Strips varying parameters and residuals, maintaining order, and updating
// num_eliminate_blocks.
bool SolverImpl::RemoveFixedBlocksFromProgram(Program* program,
int* num_eliminate_blocks,
string* error) {
int original_num_eliminate_blocks = *num_eliminate_blocks;
vector<ParameterBlock*>* parameter_blocks =
program->mutable_parameter_blocks();
// Mark all the parameters as unused. Abuse the index member of the parameter
// blocks for the marking.
for (int i = 0; i < parameter_blocks->size(); ++i) {
(*parameter_blocks)[i]->set_index(-1);
}
// Filter out residual that have all-constant parameters, and mark all the
// parameter blocks that appear in residuals.
{
vector<ResidualBlock*>* residual_blocks =
program->mutable_residual_blocks();
int j = 0;
for (int i = 0; i < residual_blocks->size(); ++i) {
ResidualBlock* residual_block = (*residual_blocks)[i];
int num_parameter_blocks = residual_block->NumParameterBlocks();
// Determine if the residual block is fixed, and also mark varying
// parameters that appear in the residual block.
bool all_constant = true;
for (int k = 0; k < num_parameter_blocks; k++) {
ParameterBlock* parameter_block = residual_block->parameter_blocks()[k];
if (!parameter_block->IsConstant()) {
all_constant = false;
parameter_block->set_index(1);
}
}
if (!all_constant) {
(*residual_blocks)[j++] = (*residual_blocks)[i];
}
}
residual_blocks->resize(j);
}
// Filter out unused or fixed parameter blocks, and update
// num_eliminate_blocks as necessary.
{
vector<ParameterBlock*>* parameter_blocks =
program->mutable_parameter_blocks();
int j = 0;
for (int i = 0; i < parameter_blocks->size(); ++i) {
ParameterBlock* parameter_block = (*parameter_blocks)[i];
if (parameter_block->index() == 1) {
(*parameter_blocks)[j++] = parameter_block;
} else if (i < original_num_eliminate_blocks) {
(*num_eliminate_blocks)--;
}
}
parameter_blocks->resize(j);
}
CHECK(((program->NumResidualBlocks() == 0) &&
(program->NumParameterBlocks() == 0)) ||
((program->NumResidualBlocks() != 0) &&
(program->NumParameterBlocks() != 0)))
<< "Congratulations, you found a bug in Ceres. Please report it.";
return true;
}
Program* SolverImpl::CreateReducedProgram(Solver::Options* options,
ProblemImpl* problem_impl,
string* error) {
Program* original_program = problem_impl->mutable_program();
scoped_ptr<Program> transformed_program(new Program(*original_program));
if (options->ordering_type == USER &&
!ApplyUserOrdering(*problem_impl,
options->ordering,
transformed_program.get(),
error)) {
return NULL;
}
if (options->ordering_type == SCHUR && options->num_eliminate_blocks != 0) {
*error = "Can't specify SCHUR ordering and num_eliminate_blocks "
"at the same time; SCHUR ordering determines "
"num_eliminate_blocks automatically.";
return NULL;
}
if (options->ordering_type == SCHUR && options->ordering.size() != 0) {
*error = "Can't specify SCHUR ordering type and the ordering "
"vector at the same time; SCHUR ordering determines "
"a suitable parameter ordering automatically.";
return NULL;
}
int num_eliminate_blocks = options->num_eliminate_blocks;
if (!RemoveFixedBlocksFromProgram(transformed_program.get(),
&num_eliminate_blocks,
error)) {
return NULL;
}
if (transformed_program->NumParameterBlocks() == 0) {
LOG(WARNING) << "No varying parameter blocks to optimize; "
<< "bailing early.";
return transformed_program.release();
}
if (options->ordering_type == SCHUR) {
vector<ParameterBlock*> schur_ordering;
num_eliminate_blocks = ComputeSchurOrdering(*transformed_program,
&schur_ordering);
CHECK_EQ(schur_ordering.size(), transformed_program->NumParameterBlocks())
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
// Replace the transformed program's ordering with the schur ordering.
swap(*transformed_program->mutable_parameter_blocks(), schur_ordering);
}
options->num_eliminate_blocks = num_eliminate_blocks;
CHECK_GE(options->num_eliminate_blocks, 0)
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
// Since the transformed program is the "active" program, and it is mutated,
// update the parameter offsets and indices.
transformed_program->SetParameterOffsetsAndIndex();
return transformed_program.release();
}
LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options,
string* error) {
#ifdef CERES_NO_SUITESPARSE
if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY) {
*error = "Can't use SPARSE_NORMAL_CHOLESKY because SuiteSparse was not "
"enabled when Ceres was built.";
return NULL;
}
#endif // CERES_NO_SUITESPARSE
if (options->linear_solver_max_num_iterations <= 0) {
*error = "Solver::Options::linear_solver_max_num_iterations is 0.";
return NULL;
}
if (options->linear_solver_min_num_iterations <= 0) {
*error = "Solver::Options::linear_solver_min_num_iterations is 0.";
return NULL;
}
if (options->linear_solver_min_num_iterations >
options->linear_solver_max_num_iterations) {
*error = "Solver::Options::linear_solver_min_num_iterations > "
"Solver::Options::linear_solver_max_num_iterations.";
return NULL;
}
LinearSolver::Options linear_solver_options;
linear_solver_options.constant_sparsity = true;
linear_solver_options.min_num_iterations =
options->linear_solver_min_num_iterations;
linear_solver_options.max_num_iterations =
options->linear_solver_max_num_iterations;
linear_solver_options.type = options->linear_solver_type;
linear_solver_options.preconditioner_type = options->preconditioner_type;
#ifdef CERES_NO_SUITESPARSE
if (linear_solver_options.preconditioner_type == SCHUR_JACOBI) {
*error = "SCHUR_JACOBI preconditioner not suppored. Please build Ceres "
"with SuiteSparse support";
return NULL;
}
if (linear_solver_options.preconditioner_type == CLUSTER_JACOBI) {
*error = "CLUSTER_JACOBI preconditioner not suppored. Please build Ceres "
"with SuiteSparse support";
return NULL;
}
if (linear_solver_options.preconditioner_type == CLUSTER_TRIDIAGONAL) {
*error = "CLUSTER_TRIDIAGONAL preconditioner not suppored. Please build "
"Ceres with SuiteSparse support";
return NULL;
}
#endif
linear_solver_options.num_threads = options->num_linear_solver_threads;
linear_solver_options.num_eliminate_blocks =
options->num_eliminate_blocks;
if ((linear_solver_options.num_eliminate_blocks == 0) &&
IsSchurType(linear_solver_options.type)) {
#ifndef CERES_NO_SUITESPARSE
LOG(INFO) << "No elimination block remaining "
<< "switching to SPARSE_NORMAL_CHOLESKY.";
linear_solver_options.type = SPARSE_NORMAL_CHOLESKY;
#else
LOG(INFO) << "No elimination block remaining switching to DENSE_QR.";
linear_solver_options.type = DENSE_QR;
#endif // CERES_NO_SUITESPARSE
}
#ifdef CERES_NO_SUITESPARSE
if (linear_solver_options.type == SPARSE_SCHUR) {
*error = "Can't use SPARSE_SCHUR because SuiteSparse was not "
"enabled when Ceres was built.";
return NULL;
}
#endif // CERES_NO_SUITESPARSE
// The matrix used for storing the dense Schur complement has a
// single lock guarding the whole matrix. Running the
// SchurComplementSolver with multiple threads leads to maximum
// contention and slowdown. If the problem is large enough to
// benefit from a multithreaded schur eliminator, you should be
// using a SPARSE_SCHUR solver anyways.
if ((linear_solver_options.num_threads > 1) &&
(linear_solver_options.type == DENSE_SCHUR)) {
LOG(WARNING) << "Warning: Solver::Options::num_linear_solver_threads = "
<< options->num_linear_solver_threads
<< " with DENSE_SCHUR will result in poor performance; "
<< "switching to single-threaded.";
linear_solver_options.num_threads = 1;
}
options->linear_solver_type = linear_solver_options.type;
options->num_linear_solver_threads = linear_solver_options.num_threads;
return LinearSolver::Create(linear_solver_options);
}
bool SolverImpl::ApplyUserOrdering(const ProblemImpl& problem_impl,
vector<double*>& ordering,
Program* program,
string* error) {
if (ordering.size() != program->NumParameterBlocks()) {
*error = StringPrintf("User specified ordering does not have the same "
"number of parameters as the problem. The problem"
"has %d blocks while the ordering has %ld blocks.",
program->NumParameterBlocks(),
ordering.size());
return false;
}
// Ensure that there are no duplicates in the user's ordering.
{
vector<double*> ordering_copy(ordering);
sort(ordering_copy.begin(), ordering_copy.end());
if (unique(ordering_copy.begin(), ordering_copy.end())
!= ordering_copy.end()) {
*error = "User specified ordering contains duplicates.";
return false;
}
}
vector<ParameterBlock*>* parameter_blocks =
program->mutable_parameter_blocks();
fill(parameter_blocks->begin(),
parameter_blocks->end(),
static_cast<ParameterBlock*>(NULL));
const ProblemImpl::ParameterMap& parameter_map = problem_impl.parameter_map();
for (int i = 0; i < ordering.size(); ++i) {
ProblemImpl::ParameterMap::const_iterator it =
parameter_map.find(ordering[i]);
if (it == parameter_map.end()) {
*error = StringPrintf("User specified ordering contains a pointer "
"to a double that is not a parameter block in the "
"problem. The invalid double is at position %d "
" in options.ordering.", i);
return false;
}
(*parameter_blocks)[i] = it->second;
}
return true;
}
// Find the minimum index of any parameter block to the given residual.
// Parameter blocks that have indices greater than num_eliminate_blocks are
// considered to have an index equal to num_eliminate_blocks.
int MinParameterBlock(const ResidualBlock* residual_block,
int num_eliminate_blocks) {
int min_parameter_block_position = num_eliminate_blocks;
for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) {
ParameterBlock* parameter_block = residual_block->parameter_blocks()[i];
DCHECK_NE(parameter_block->index(), -1)
<< "Did you forget to call Program::SetParameterOffsetsAndIndex()?";
min_parameter_block_position = std::min(parameter_block->index(),
min_parameter_block_position);
}
return min_parameter_block_position;
}
// Reorder the residuals for program, if necessary, so that the residuals
// involving each E block occur together. This is a necessary condition for the
// Schur eliminator, which works on these "row blocks" in the jacobian.
bool SolverImpl::MaybeReorderResidualBlocks(const Solver::Options& options,
Program* program,
string* error) {
// Only Schur types require the lexicographic reordering.
if (!IsSchurType(options.linear_solver_type)) {
return true;
}
CHECK_NE(0, options.num_eliminate_blocks)
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
// Create a histogram of the number of residuals for each E block. There is an
// extra bucket at the end to catch all non-eliminated F blocks.
vector<int> residual_blocks_per_e_block(options.num_eliminate_blocks + 1);
vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks();
vector<int> min_position_per_residual(residual_blocks->size());
for (int i = 0; i < residual_blocks->size(); ++i) {
ResidualBlock* residual_block = (*residual_blocks)[i];
int position = MinParameterBlock(residual_block,
options.num_eliminate_blocks);
min_position_per_residual[i] = position;
DCHECK_LE(position, options.num_eliminate_blocks);
residual_blocks_per_e_block[position]++;
}
// Run a cumulative sum on the histogram, to obtain offsets to the start of
// each histogram bucket (where each bucket is for the residuals for that
// E-block).
vector<int> offsets(options.num_eliminate_blocks + 1);
std::partial_sum(residual_blocks_per_e_block.begin(),
residual_blocks_per_e_block.end(),
offsets.begin());
CHECK_EQ(offsets.back(), residual_blocks->size())
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
CHECK(find(residual_blocks_per_e_block.begin(),
residual_blocks_per_e_block.end() - 1, 0) !=
residual_blocks_per_e_block.end())
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
// Fill in each bucket with the residual blocks for its corresponding E block.
// Each bucket is individually filled from the back of the bucket to the front
// of the bucket. The filling order among the buckets is dictated by the
// residual blocks. This loop uses the offsets as counters; subtracting one
// from each offset as a residual block is placed in the bucket. When the
// filling is finished, the offset pointerts should have shifted down one
// entry (this is verified below).
vector<ResidualBlock*> reordered_residual_blocks(
(*residual_blocks).size(), static_cast<ResidualBlock*>(NULL));
for (int i = 0; i < residual_blocks->size(); ++i) {
int bucket = min_position_per_residual[i];
// Decrement the cursor, which should now point at the next empty position.
offsets[bucket]--;
// Sanity.
CHECK(reordered_residual_blocks[offsets[bucket]] == NULL)
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i];
}
// Sanity check #1: The difference in bucket offsets should match the
// histogram sizes.
for (int i = 0; i < options.num_eliminate_blocks; ++i) {
CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i])
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
}
// Sanity check #2: No NULL's left behind.
for (int i = 0; i < reordered_residual_blocks.size(); ++i) {
CHECK(reordered_residual_blocks[i] != NULL)
<< "Congratulations, you found a Ceres bug! Please report this error "
<< "to the developers.";
}
// Now that the residuals are collected by E block, swap them in place.
swap(*program->mutable_residual_blocks(), reordered_residual_blocks);
return true;
}
Evaluator* SolverImpl::CreateEvaluator(const Solver::Options& options,
Program* program,
string* error) {
Evaluator::Options evaluator_options;
evaluator_options.linear_solver_type = options.linear_solver_type;
evaluator_options.num_eliminate_blocks = options.num_eliminate_blocks;
evaluator_options.num_threads = options.num_threads;
return Evaluator::Create(evaluator_options, program, error);
}
} // namespace internal
} // namespace ceres