blob: 957ebcc65df8d3f578c716ddc4ca0cc9cb8f5ec4 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
#ifndef CERES_INTERNAL_SOLVER_IMPL_H_
#define CERES_INTERNAL_SOLVER_IMPL_H_
#include "ceres/solver.h"
namespace ceres {
namespace internal {
class Evaluator;
class LinearSolver;
class ProblemImpl;
class Program;
class SolverImpl {
public:
// Mirrors the interface in solver.h, but exposes implementation
// details for testing internally.
static void Solve(const Solver::Options& options,
Problem* problem,
Solver::Summary* summary);
// Create the transformed Program, which has all the fixed blocks
// and residuals eliminated, and in the case of automatic schur
// ordering, has the E blocks first in the resulting program, with
// options.num_eliminate_blocks set appropriately.
static Program* CreateReducedProgram(Solver::Options* options,
ProblemImpl* problem_impl,
string* error);
// Create the appropriate linear solver, taking into account any
// config changes decided by CreateTransformedProgram(). The
// selected linear solver, which may be different from what the user
// selected; consider the case that the remaining elimininated
// blocks is zero after removing fixed blocks.
static LinearSolver* CreateLinearSolver(Solver::Options* options,
string* error);
// Reorder the parameter blocks in program using the vector
// ordering. A return value of true indicates success and false
// indicates an error was encountered whose cause is logged to
// LOG(ERROR).
static bool ApplyUserOrdering(const ProblemImpl& problem_impl,
vector<double*>& ordering,
Program* program,
string* error);
// Reorder the residuals for program, if necessary, so that the
// residuals involving each E block occur together. This is a
// necessary condition for the Schur eliminator, which works on
// these "row blocks" in the jacobian.
static bool MaybeReorderResidualBlocks(const Solver::Options& options,
Program* program,
string* error);
// Create the appropriate evaluator for the transformed program.
static Evaluator* CreateEvaluator(const Solver::Options& options,
Program* program,
string* error);
// Run the minimization for the given evaluator and configuration.
static void Minimize(const Solver::Options &options,
Program* program,
Evaluator* evaluator,
LinearSolver* linear_solver,
double* initial_parameters,
double* final_parameters,
Solver::Summary* summary);
// Remove the fixed or unused parameter blocks and residuals
// depending only on fixed parameters from the problem. Also updates
// num_eliminate_blocks, since removed parameters changes the point
// at which the eliminated blocks is valid.
static bool RemoveFixedBlocksFromProgram(Program* program,
int* num_eliminate_blocks,
string* error);
};
} // namespace internal
} // namespace ceres
#endif // CERES_INTERNAL_SOLVER_IMPL_H_