| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2014 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // |
| // Bounds constrained test problems from the paper |
| // |
| // Testing Unconstrained Optimization Software |
| // Jorge J. More, Burton S. Garbow and Kenneth E. Hillstrom |
| // ACM Transactions on Mathematical Software, 7(1), pp. 17-41, 1981 |
| // |
| // A subset of these problems were augmented with bounds and used for |
| // testing bounds constrained optimization algorithms by |
| // |
| // A Trust Region Approach to Linearly Constrained Optimization |
| // David M. Gay |
| // Numerical Analysis (Griffiths, D.F., ed.), pp. 72-105 |
| // Lecture Notes in Mathematics 1066, Springer Verlag, 1984. |
| // |
| // The latter paper is behind a paywall. We obtained the bounds on the |
| // variables and the function values at the global minimums from |
| // |
| // http://www.mat.univie.ac.at/~neum/glopt/bounds.html |
| // |
| // A problem is considered solved if of the log relative error of its |
| // objective function is at least 5. |
| |
| |
| #include <cmath> |
| #include <iostream> // NOLINT |
| #include "ceres/ceres.h" |
| #include "gflags/gflags.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace examples { |
| |
| const double kDoubleMax = std::numeric_limits<double>::max(); |
| |
| #define BEGIN_MGH_PROBLEM(name, num_parameters, num_residuals) \ |
| struct name { \ |
| static const int kNumParameters = num_parameters; \ |
| static const double initial_x[kNumParameters]; \ |
| static const double lower_bounds[kNumParameters]; \ |
| static const double upper_bounds[kNumParameters]; \ |
| static const double constrained_optimal_cost; \ |
| static const double unconstrained_optimal_cost; \ |
| static CostFunction* Create() { \ |
| return new AutoDiffCostFunction<name, \ |
| num_residuals, \ |
| num_parameters>(new name); \ |
| } \ |
| template <typename T> \ |
| bool operator()(const T* const x, T* residual) const { |
| |
| #define END_MGH_PROBLEM return true; } }; // NOLINT |
| |
| // Rosenbrock function. |
| BEGIN_MGH_PROBLEM(TestProblem1, 2, 2) |
| const T x1 = x[0]; |
| const T x2 = x[1]; |
| residual[0] = T(10.0) * (x2 - x1 * x1); |
| residual[1] = T(1.0) - x1; |
| END_MGH_PROBLEM; |
| |
| const double TestProblem1::initial_x[] = {-1.2, 1.0}; |
| const double TestProblem1::lower_bounds[] = {-kDoubleMax, -kDoubleMax}; |
| const double TestProblem1::upper_bounds[] = {kDoubleMax, kDoubleMax}; |
| const double TestProblem1::constrained_optimal_cost = |
| std::numeric_limits<double>::quiet_NaN(); |
| const double TestProblem1::unconstrained_optimal_cost = 0.0; |
| |
| // Freudenstein and Roth function. |
| BEGIN_MGH_PROBLEM(TestProblem2, 2, 2) |
| const T x1 = x[0]; |
| const T x2 = x[1]; |
| residual[0] = T(-13.0) + x1 + ((T(5.0) - x2) * x2 - T(2.0)) * x2; |
| residual[1] = T(-29.0) + x1 + ((x2 + T(1.0)) * x2 - T(14.0)) * x2; |
| END_MGH_PROBLEM; |
| |
| const double TestProblem2::initial_x[] = {0.5, -2.0}; |
| const double TestProblem2::lower_bounds[] = {-kDoubleMax, -kDoubleMax}; |
| const double TestProblem2::upper_bounds[] = {kDoubleMax, kDoubleMax}; |
| const double TestProblem2::constrained_optimal_cost = |
| std::numeric_limits<double>::quiet_NaN(); |
| const double TestProblem2::unconstrained_optimal_cost = 0.0; |
| |
| // Powell badly scaled function. |
| BEGIN_MGH_PROBLEM(TestProblem3, 2, 2) |
| const T x1 = x[0]; |
| const T x2 = x[1]; |
| residual[0] = T(10000.0) * x1 * x2 - T(1.0); |
| residual[1] = exp(-x1) + exp(-x2) - T(1.0001); |
| END_MGH_PROBLEM; |
| |
| const double TestProblem3::initial_x[] = {0.0, 1.0}; |
| const double TestProblem3::lower_bounds[] = {0.0, 1.0}; |
| const double TestProblem3::upper_bounds[] = {1.0, 9.0}; |
| const double TestProblem3::constrained_optimal_cost = 0.15125900e-9; |
| const double TestProblem3::unconstrained_optimal_cost = 0.0; |
| |
| // Brown badly scaled function. |
| BEGIN_MGH_PROBLEM(TestProblem4, 2, 3) |
| const T x1 = x[0]; |
| const T x2 = x[1]; |
| residual[0] = x1 - T(1000000.0); |
| residual[1] = x2 - T(0.000002); |
| residual[2] = x1 * x2 - T(2.0); |
| END_MGH_PROBLEM; |
| |
| const double TestProblem4::initial_x[] = {1.0, 1.0}; |
| const double TestProblem4::lower_bounds[] = {0.0, 0.00003}; |
| const double TestProblem4::upper_bounds[] = {1000000.0, 100.0}; |
| const double TestProblem4::constrained_optimal_cost = 0.78400000e3; |
| const double TestProblem4::unconstrained_optimal_cost = 0.0; |
| |
| // Beale function. |
| BEGIN_MGH_PROBLEM(TestProblem5, 2, 3) |
| const T x1 = x[0]; |
| const T x2 = x[1]; |
| residual[0] = T(1.5) - x1 * (T(1.0) - x2); |
| residual[1] = T(2.25) - x1 * (T(1.0) - x2 * x2); |
| residual[2] = T(2.625) - x1 * (T(1.0) - x2 * x2 * x2); |
| END_MGH_PROBLEM; |
| |
| const double TestProblem5::initial_x[] = {1.0, 1.0}; |
| const double TestProblem5::lower_bounds[] = {0.6, 0.5}; |
| const double TestProblem5::upper_bounds[] = {10.0, 100.0}; |
| const double TestProblem5::constrained_optimal_cost = 0.0; |
| const double TestProblem5::unconstrained_optimal_cost = 0.0; |
| |
| // Jennrich and Sampson function. |
| BEGIN_MGH_PROBLEM(TestProblem6, 2, 10) |
| const T x1 = x[0]; |
| const T x2 = x[1]; |
| for (int i = 1; i <= 10; ++i) { |
| residual[i - 1] = T(2.0) + T(2.0 * i) - |
| exp(T(static_cast<double>(i)) * x1) - |
| exp(T(static_cast<double>(i) * x2)); |
| } |
| END_MGH_PROBLEM; |
| |
| const double TestProblem6::initial_x[] = {1.0, 1.0}; |
| const double TestProblem6::lower_bounds[] = {-kDoubleMax, -kDoubleMax}; |
| const double TestProblem6::upper_bounds[] = {kDoubleMax, kDoubleMax}; |
| const double TestProblem6::constrained_optimal_cost = |
| std::numeric_limits<double>::quiet_NaN(); |
| const double TestProblem6::unconstrained_optimal_cost = 124.362; |
| |
| // Helical valley function. |
| BEGIN_MGH_PROBLEM(TestProblem7, 3, 3) |
| const T x1 = x[0]; |
| const T x2 = x[1]; |
| const T x3 = x[2]; |
| const T theta = T(0.5 / M_PI) * atan(x2 / x1) + (x1 > 0.0 ? T(0.0) : T(0.5)); |
| |
| residual[0] = T(10.0) * (x3 - T(10.0) * theta); |
| residual[1] = T(10.0) * (sqrt(x1 * x1 + x2 * x2) - T(1.0)); |
| residual[2] = x3; |
| END_MGH_PROBLEM; |
| |
| const double TestProblem7::initial_x[] = {-1.0, 0.0, 0.0}; |
| const double TestProblem7::lower_bounds[] = {-100.0, -1.0, -1.0}; |
| const double TestProblem7::upper_bounds[] = {0.8, 1.0, 1.0}; |
| const double TestProblem7::constrained_optimal_cost = 0.99042212; |
| const double TestProblem7::unconstrained_optimal_cost = 0.0; |
| |
| // Bard function |
| BEGIN_MGH_PROBLEM(TestProblem8, 3, 15) |
| const T x1 = x[0]; |
| const T x2 = x[1]; |
| const T x3 = x[2]; |
| |
| double y[] = {0.14, 0.18, 0.22, 0.25, |
| 0.29, 0.32, 0.35, 0.39, 0.37, 0.58, |
| 0.73, 0.96, 1.34, 2.10, 4.39}; |
| |
| for (int i = 1; i <=15; ++i) { |
| const T u = T(static_cast<double>(i)); |
| const T v = T(static_cast<double>(16 - i)); |
| const T w = T(static_cast<double>(std::min(i, 16 - i))); |
| residual[i - 1] = T(y[i - 1]) - x1 + u / (v * x2 + w * x3); |
| } |
| END_MGH_PROBLEM; |
| |
| const double TestProblem8::initial_x[] = {1.0, 1.0, 1.0}; |
| const double TestProblem8::lower_bounds[] = { |
| -kDoubleMax, -kDoubleMax, -kDoubleMax}; |
| const double TestProblem8::upper_bounds[] = { |
| kDoubleMax, kDoubleMax, kDoubleMax}; |
| const double TestProblem8::constrained_optimal_cost = |
| std::numeric_limits<double>::quiet_NaN(); |
| const double TestProblem8::unconstrained_optimal_cost = 8.21487e-3; |
| |
| // Gaussian function. |
| BEGIN_MGH_PROBLEM(TestProblem9, 3, 15) |
| const T x1 = x[0]; |
| const T x2 = x[1]; |
| const T x3 = x[2]; |
| |
| const double y[] = {0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521, |
| 0.3989, |
| 0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009}; |
| for (int i = 0; i < 15; ++i) { |
| const T t_i = T((8.0 - i - 1.0) / 2.0); |
| const T y_i = T(y[i]); |
| residual[i] = x1 * exp(-x2 * (t_i - x3) * (t_i - x3) / T(2.0)) - y_i; |
| } |
| END_MGH_PROBLEM; |
| |
| const double TestProblem9::initial_x[] = {0.4, 1.0, 0.0}; |
| const double TestProblem9::lower_bounds[] = {0.398, 1.0, -0.5}; |
| const double TestProblem9::upper_bounds[] = {4.2, 2.0, 0.1}; |
| const double TestProblem9::constrained_optimal_cost = 0.11279300e-7; |
| const double TestProblem9::unconstrained_optimal_cost = 0.112793e-7; |
| |
| // Meyer function. |
| BEGIN_MGH_PROBLEM(TestProblem10, 3, 16) |
| const T x1 = x[0]; |
| const T x2 = x[1]; |
| const T x3 = x[2]; |
| |
| const double y[] = {34780, 28610, 23650, 19630, 16370, 13720, 11540, 9744, |
| 8261, 7030, 6005, 5147, 4427, 3820, 3307, 2872}; |
| |
| for (int i = 0; i < 16; ++i) { |
| T t = T(45 + 5.0 * (i + 1)); |
| residual[i] = x1 * exp(x2 / (t + x3)) - y[i]; |
| } |
| END_MGH_PROBLEM |
| |
| |
| const double TestProblem10::initial_x[] = {0.02, 4000, 250}; |
| const double TestProblem10::lower_bounds[] ={ |
| -kDoubleMax, -kDoubleMax, -kDoubleMax}; |
| const double TestProblem10::upper_bounds[] ={ |
| kDoubleMax, kDoubleMax, kDoubleMax}; |
| const double TestProblem10::constrained_optimal_cost = |
| std::numeric_limits<double>::quiet_NaN(); |
| const double TestProblem10::unconstrained_optimal_cost = 87.9458; |
| |
| #undef BEGIN_MGH_PROBLEM |
| #undef END_MGH_PROBLEM |
| |
| template<typename TestProblem> string ConstrainedSolve() { |
| double x[TestProblem::kNumParameters]; |
| std::copy(TestProblem::initial_x, |
| TestProblem::initial_x + TestProblem::kNumParameters, |
| x); |
| |
| Problem problem; |
| problem.AddResidualBlock(TestProblem::Create(), NULL, x); |
| for (int i = 0; i < TestProblem::kNumParameters; ++i) { |
| problem.SetParameterLowerBound(x, i, TestProblem::lower_bounds[i]); |
| problem.SetParameterUpperBound(x, i, TestProblem::upper_bounds[i]); |
| } |
| |
| Solver::Options options; |
| options.parameter_tolerance = 1e-18; |
| options.function_tolerance = 1e-18; |
| options.gradient_tolerance = 1e-18; |
| options.max_num_iterations = 1000; |
| options.linear_solver_type = DENSE_QR; |
| Solver::Summary summary; |
| Solve(options, &problem, &summary); |
| |
| const double kMinLogRelativeError = 5.0; |
| const double log_relative_error = -std::log10( |
| std::abs(2.0 * summary.final_cost - |
| TestProblem::constrained_optimal_cost) / |
| (TestProblem::constrained_optimal_cost > 0.0 |
| ? TestProblem::constrained_optimal_cost |
| : 1.0)); |
| |
| return (log_relative_error >= kMinLogRelativeError |
| ? "Success\n" |
| : "Failure\n"); |
| } |
| |
| template<typename TestProblem> string UnconstrainedSolve() { |
| double x[TestProblem::kNumParameters]; |
| std::copy(TestProblem::initial_x, |
| TestProblem::initial_x + TestProblem::kNumParameters, |
| x); |
| |
| Problem problem; |
| problem.AddResidualBlock(TestProblem::Create(), NULL, x); |
| |
| Solver::Options options; |
| options.parameter_tolerance = 1e-18; |
| options.function_tolerance = 0.0; |
| options.gradient_tolerance = 1e-18; |
| options.max_num_iterations = 1000; |
| options.linear_solver_type = DENSE_QR; |
| Solver::Summary summary; |
| Solve(options, &problem, &summary); |
| |
| const double kMinLogRelativeError = 5.0; |
| const double log_relative_error = -std::log10( |
| std::abs(2.0 * summary.final_cost - |
| TestProblem::unconstrained_optimal_cost) / |
| (TestProblem::unconstrained_optimal_cost > 0.0 |
| ? TestProblem::unconstrained_optimal_cost |
| : 1.0)); |
| |
| return (log_relative_error >= kMinLogRelativeError |
| ? "Success\n" |
| : "Failure\n"); |
| } |
| |
| } // namespace examples |
| } // namespace ceres |
| |
| int main(int argc, char** argv) { |
| google::ParseCommandLineFlags(&argc, &argv, true); |
| google::InitGoogleLogging(argv[0]); |
| |
| using ceres::examples::UnconstrainedSolve; |
| using ceres::examples::ConstrainedSolve; |
| |
| #define UNCONSTRAINED_SOLVE(n) \ |
| std::cout << "Problem " << n << " : " \ |
| << UnconstrainedSolve<ceres::examples::TestProblem##n>(); |
| |
| #define CONSTRAINED_SOLVE(n) \ |
| std::cout << "Problem " << n << " : " \ |
| << ConstrainedSolve<ceres::examples::TestProblem##n>(); |
| |
| std::cout << "Unconstrained problems\n"; |
| UNCONSTRAINED_SOLVE(1); |
| UNCONSTRAINED_SOLVE(2); |
| UNCONSTRAINED_SOLVE(3); |
| UNCONSTRAINED_SOLVE(4); |
| UNCONSTRAINED_SOLVE(5); |
| UNCONSTRAINED_SOLVE(6); |
| UNCONSTRAINED_SOLVE(7); |
| UNCONSTRAINED_SOLVE(8); |
| UNCONSTRAINED_SOLVE(9); |
| UNCONSTRAINED_SOLVE(10); |
| |
| std::cout << "\nConstrained problems\n"; |
| CONSTRAINED_SOLVE(3); |
| CONSTRAINED_SOLVE(4); |
| CONSTRAINED_SOLVE(5); |
| CONSTRAINED_SOLVE(7); |
| CONSTRAINED_SOLVE(9); |
| |
| return 0; |
| } |