| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2013 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // |
| // CostFunctionToFunctor is an adapter class that allows users to use |
| // CostFunction objects in templated functors which are to be used for |
| // automatic differentiation. This allows the user to seamlessly mix |
| // analytic, numeric and automatic differentiation. |
| // |
| // For example, let us assume that |
| // |
| // class IntrinsicProjection : public SizedCostFunction<2, 5, 3> { |
| // public: |
| // IntrinsicProjection(const double* observations); |
| // virtual bool Evaluate(double const* const* parameters, |
| // double* residuals, |
| // double** jacobians) const; |
| // }; |
| // |
| // is a cost function that implements the projection of a point in its |
| // local coordinate system onto its image plane and subtracts it from |
| // the observed point projection. It can compute its residual and |
| // either via analytic or numerical differentiation can compute its |
| // jacobians. |
| // |
| // Now we would like to compose the action of this CostFunction with |
| // the action of camera extrinsics, i.e., rotation and |
| // translation. Say we have a templated function |
| // |
| // template<typename T> |
| // void RotateAndTranslatePoint(const T* rotation, |
| // const T* translation, |
| // const T* point, |
| // T* result); |
| // |
| // Then we can now do the following, |
| // |
| // struct CameraProjection { |
| // CameraProjection(double* observation) { |
| // intrinsic_projection_.reset( |
| // new CostFunctionToFunctor<2, 5, 3>( |
| // new IntrinsicProjection(observation_))); |
| // } |
| // template <typename T> |
| // bool operator()(const T* rotation, |
| // const T* translation, |
| // const T* intrinsics, |
| // const T* point, |
| // T* residual) const { |
| // T transformed_point[3]; |
| // RotateAndTranslatePoint(rotation, translation, point, transformed_point); |
| // |
| // // Note that we call intrinsic_projection_, just like it was |
| // // any other templated functor. |
| // |
| // return (*intrinsic_projection_)(intrinsics, transformed_point, residual); |
| // } |
| // |
| // private: |
| // scoped_ptr<CostFunctionToFunctor<2,5,3> > intrinsic_projection_; |
| // }; |
| |
| #ifndef CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_ |
| #define CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_ |
| |
| #include <numeric> |
| #include <vector> |
| |
| #include "ceres/cost_function.h" |
| #include "ceres/internal/fixed_array.h" |
| #include "ceres/internal/port.h" |
| #include "ceres/internal/scoped_ptr.h" |
| |
| namespace ceres { |
| |
| template <int kNumResiduals, |
| int N0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, |
| int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0> |
| class CostFunctionToFunctor { |
| public: |
| explicit CostFunctionToFunctor(CostFunction* cost_function) |
| : cost_function_(cost_function) { |
| CHECK_NOTNULL(cost_function); |
| |
| CHECK_GE(kNumResiduals, 0); |
| CHECK_EQ(cost_function->num_residuals(), kNumResiduals); |
| |
| // This block breaks the 80 column rule to keep it somewhat readable. |
| CHECK((!N1 && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || |
| ((N1 > 0) && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || |
| ((N1 > 0) && (N2 > 0) && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && !N5 && !N6 && !N7 && !N8 && !N9) || |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && !N6 && !N7 && !N8 && !N9) || |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && !N7 && !N8 && !N9) || |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && !N8 && !N9) || |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && !N9) || |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && (N9 > 0))) |
| << "Zero block cannot precede a non-zero block. Block sizes are " |
| << "(ignore trailing 0s): " << N0 << ", " << N1 << ", " << N2 << ", " |
| << N3 << ", " << N4 << ", " << N5 << ", " << N6 << ", " << N7 << ", " |
| << N8 << ", " << N9; |
| |
| const vector<int32>& parameter_block_sizes = |
| cost_function->parameter_block_sizes(); |
| const int num_parameter_blocks = |
| (N0 > 0) + (N1 > 0) + (N2 > 0) + (N3 > 0) + (N4 > 0) + |
| (N5 > 0) + (N6 > 0) + (N7 > 0) + (N8 > 0) + (N9 > 0); |
| CHECK_EQ(parameter_block_sizes.size(), num_parameter_blocks); |
| |
| CHECK_EQ(N0, parameter_block_sizes[0]); |
| if (parameter_block_sizes.size() > 1) CHECK_EQ(N1, parameter_block_sizes[1]); // NOLINT |
| if (parameter_block_sizes.size() > 2) CHECK_EQ(N2, parameter_block_sizes[2]); // NOLINT |
| if (parameter_block_sizes.size() > 3) CHECK_EQ(N3, parameter_block_sizes[3]); // NOLINT |
| if (parameter_block_sizes.size() > 4) CHECK_EQ(N4, parameter_block_sizes[4]); // NOLINT |
| if (parameter_block_sizes.size() > 5) CHECK_EQ(N5, parameter_block_sizes[5]); // NOLINT |
| if (parameter_block_sizes.size() > 6) CHECK_EQ(N6, parameter_block_sizes[6]); // NOLINT |
| if (parameter_block_sizes.size() > 7) CHECK_EQ(N7, parameter_block_sizes[7]); // NOLINT |
| if (parameter_block_sizes.size() > 8) CHECK_EQ(N8, parameter_block_sizes[8]); // NOLINT |
| if (parameter_block_sizes.size() > 9) CHECK_EQ(N9, parameter_block_sizes[9]); // NOLINT |
| |
| CHECK_EQ(accumulate(parameter_block_sizes.begin(), |
| parameter_block_sizes.end(), 0), |
| N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9); |
| } |
| |
| bool operator()(const double* x0, double* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_EQ(N1, 0); |
| CHECK_EQ(N2, 0); |
| CHECK_EQ(N3, 0); |
| CHECK_EQ(N4, 0); |
| CHECK_EQ(N5, 0); |
| CHECK_EQ(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| |
| return cost_function_->Evaluate(&x0, residuals, NULL); |
| } |
| |
| bool operator()(const double* x0, |
| const double* x1, |
| double* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_EQ(N2, 0); |
| CHECK_EQ(N3, 0); |
| CHECK_EQ(N4, 0); |
| CHECK_EQ(N5, 0); |
| CHECK_EQ(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const double*> parameter_blocks(2); |
| parameter_blocks[0] = x0; |
| parameter_blocks[1] = x1; |
| return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); |
| } |
| |
| bool operator()(const double* x0, |
| const double* x1, |
| const double* x2, |
| double* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_EQ(N3, 0); |
| CHECK_EQ(N4, 0); |
| CHECK_EQ(N5, 0); |
| CHECK_EQ(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const double*> parameter_blocks(3); |
| parameter_blocks[0] = x0; |
| parameter_blocks[1] = x1; |
| parameter_blocks[2] = x2; |
| return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); |
| } |
| |
| bool operator()(const double* x0, |
| const double* x1, |
| const double* x2, |
| const double* x3, |
| double* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_EQ(N4, 0); |
| CHECK_EQ(N5, 0); |
| CHECK_EQ(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const double*> parameter_blocks(4); |
| parameter_blocks[0] = x0; |
| parameter_blocks[1] = x1; |
| parameter_blocks[2] = x2; |
| parameter_blocks[3] = x3; |
| return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); |
| } |
| |
| bool operator()(const double* x0, |
| const double* x1, |
| const double* x2, |
| const double* x3, |
| const double* x4, |
| double* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_NE(N4, 0); |
| CHECK_EQ(N5, 0); |
| CHECK_EQ(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const double*> parameter_blocks(5); |
| parameter_blocks[0] = x0; |
| parameter_blocks[1] = x1; |
| parameter_blocks[2] = x2; |
| parameter_blocks[3] = x3; |
| parameter_blocks[4] = x4; |
| return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); |
| } |
| |
| bool operator()(const double* x0, |
| const double* x1, |
| const double* x2, |
| const double* x3, |
| const double* x4, |
| const double* x5, |
| double* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_NE(N4, 0); |
| CHECK_NE(N5, 0); |
| CHECK_EQ(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const double*> parameter_blocks(6); |
| parameter_blocks[0] = x0; |
| parameter_blocks[1] = x1; |
| parameter_blocks[2] = x2; |
| parameter_blocks[3] = x3; |
| parameter_blocks[4] = x4; |
| parameter_blocks[5] = x5; |
| return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); |
| } |
| |
| bool operator()(const double* x0, |
| const double* x1, |
| const double* x2, |
| const double* x3, |
| const double* x4, |
| const double* x5, |
| const double* x6, |
| double* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_NE(N4, 0); |
| CHECK_NE(N5, 0); |
| CHECK_NE(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const double*> parameter_blocks(7); |
| parameter_blocks[0] = x0; |
| parameter_blocks[1] = x1; |
| parameter_blocks[2] = x2; |
| parameter_blocks[3] = x3; |
| parameter_blocks[4] = x4; |
| parameter_blocks[5] = x5; |
| parameter_blocks[6] = x6; |
| return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); |
| } |
| |
| bool operator()(const double* x0, |
| const double* x1, |
| const double* x2, |
| const double* x3, |
| const double* x4, |
| const double* x5, |
| const double* x6, |
| const double* x7, |
| double* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_NE(N4, 0); |
| CHECK_NE(N5, 0); |
| CHECK_NE(N6, 0); |
| CHECK_NE(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const double*> parameter_blocks(8); |
| parameter_blocks[0] = x0; |
| parameter_blocks[1] = x1; |
| parameter_blocks[2] = x2; |
| parameter_blocks[3] = x3; |
| parameter_blocks[4] = x4; |
| parameter_blocks[5] = x5; |
| parameter_blocks[6] = x6; |
| parameter_blocks[7] = x7; |
| return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); |
| } |
| |
| bool operator()(const double* x0, |
| const double* x1, |
| const double* x2, |
| const double* x3, |
| const double* x4, |
| const double* x5, |
| const double* x6, |
| const double* x7, |
| const double* x8, |
| double* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_NE(N4, 0); |
| CHECK_NE(N5, 0); |
| CHECK_NE(N6, 0); |
| CHECK_NE(N7, 0); |
| CHECK_NE(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const double*> parameter_blocks(9); |
| parameter_blocks[0] = x0; |
| parameter_blocks[1] = x1; |
| parameter_blocks[2] = x2; |
| parameter_blocks[3] = x3; |
| parameter_blocks[4] = x4; |
| parameter_blocks[5] = x5; |
| parameter_blocks[6] = x6; |
| parameter_blocks[7] = x7; |
| parameter_blocks[8] = x8; |
| return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); |
| } |
| |
| bool operator()(const double* x0, |
| const double* x1, |
| const double* x2, |
| const double* x3, |
| const double* x4, |
| const double* x5, |
| const double* x6, |
| const double* x7, |
| const double* x8, |
| const double* x9, |
| double* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_NE(N4, 0); |
| CHECK_NE(N5, 0); |
| CHECK_NE(N6, 0); |
| CHECK_NE(N7, 0); |
| CHECK_NE(N8, 0); |
| CHECK_NE(N9, 0); |
| internal::FixedArray<const double*> parameter_blocks(10); |
| parameter_blocks[0] = x0; |
| parameter_blocks[1] = x1; |
| parameter_blocks[2] = x2; |
| parameter_blocks[3] = x3; |
| parameter_blocks[4] = x4; |
| parameter_blocks[5] = x5; |
| parameter_blocks[6] = x6; |
| parameter_blocks[7] = x7; |
| parameter_blocks[8] = x8; |
| parameter_blocks[9] = x9; |
| return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); |
| } |
| |
| template <typename JetT> |
| bool operator()(const JetT* x0, JetT* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_EQ(N1, 0); |
| CHECK_EQ(N2, 0); |
| CHECK_EQ(N3, 0); |
| CHECK_EQ(N4, 0); |
| CHECK_EQ(N5, 0); |
| CHECK_EQ(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| return EvaluateWithJets(&x0, residuals); |
| } |
| |
| template <typename JetT> |
| bool operator()(const JetT* x0, |
| const JetT* x1, |
| JetT* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_EQ(N2, 0); |
| CHECK_EQ(N3, 0); |
| CHECK_EQ(N4, 0); |
| CHECK_EQ(N5, 0); |
| CHECK_EQ(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const JetT*> jets(2); |
| jets[0] = x0; |
| jets[1] = x1; |
| return EvaluateWithJets(jets.get(), residuals); |
| } |
| |
| template <typename JetT> |
| bool operator()(const JetT* x0, |
| const JetT* x1, |
| const JetT* x2, |
| JetT* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_EQ(N3, 0); |
| CHECK_EQ(N4, 0); |
| CHECK_EQ(N5, 0); |
| CHECK_EQ(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const JetT*> jets(3); |
| jets[0] = x0; |
| jets[1] = x1; |
| jets[2] = x2; |
| return EvaluateWithJets(jets.get(), residuals); |
| } |
| |
| template <typename JetT> |
| bool operator()(const JetT* x0, |
| const JetT* x1, |
| const JetT* x2, |
| const JetT* x3, |
| JetT* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_EQ(N4, 0); |
| CHECK_EQ(N5, 0); |
| CHECK_EQ(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const JetT*> jets(4); |
| jets[0] = x0; |
| jets[1] = x1; |
| jets[2] = x2; |
| jets[3] = x3; |
| return EvaluateWithJets(jets.get(), residuals); |
| } |
| |
| template <typename JetT> |
| bool operator()(const JetT* x0, |
| const JetT* x1, |
| const JetT* x2, |
| const JetT* x3, |
| const JetT* x4, |
| JetT* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_NE(N4, 0); |
| CHECK_EQ(N5, 0); |
| CHECK_EQ(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const JetT*> jets(5); |
| jets[0] = x0; |
| jets[1] = x1; |
| jets[2] = x2; |
| jets[3] = x3; |
| jets[4] = x4; |
| return EvaluateWithJets(jets.get(), residuals); |
| } |
| |
| template <typename JetT> |
| bool operator()(const JetT* x0, |
| const JetT* x1, |
| const JetT* x2, |
| const JetT* x3, |
| const JetT* x4, |
| const JetT* x5, |
| JetT* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_NE(N4, 0); |
| CHECK_NE(N5, 0); |
| CHECK_EQ(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const JetT*> jets(6); |
| jets[0] = x0; |
| jets[1] = x1; |
| jets[2] = x2; |
| jets[3] = x3; |
| jets[4] = x4; |
| jets[5] = x5; |
| return EvaluateWithJets(jets.get(), residuals); |
| } |
| |
| template <typename JetT> |
| bool operator()(const JetT* x0, |
| const JetT* x1, |
| const JetT* x2, |
| const JetT* x3, |
| const JetT* x4, |
| const JetT* x5, |
| const JetT* x6, |
| JetT* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_NE(N4, 0); |
| CHECK_NE(N5, 0); |
| CHECK_NE(N6, 0); |
| CHECK_EQ(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const JetT*> jets(7); |
| jets[0] = x0; |
| jets[1] = x1; |
| jets[2] = x2; |
| jets[3] = x3; |
| jets[4] = x4; |
| jets[5] = x5; |
| jets[6] = x6; |
| return EvaluateWithJets(jets.get(), residuals); |
| } |
| |
| template <typename JetT> |
| bool operator()(const JetT* x0, |
| const JetT* x1, |
| const JetT* x2, |
| const JetT* x3, |
| const JetT* x4, |
| const JetT* x5, |
| const JetT* x6, |
| const JetT* x7, |
| JetT* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_NE(N4, 0); |
| CHECK_NE(N5, 0); |
| CHECK_NE(N6, 0); |
| CHECK_NE(N7, 0); |
| CHECK_EQ(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const JetT*> jets(8); |
| jets[0] = x0; |
| jets[1] = x1; |
| jets[2] = x2; |
| jets[3] = x3; |
| jets[4] = x4; |
| jets[5] = x5; |
| jets[6] = x6; |
| jets[7] = x7; |
| return EvaluateWithJets(jets.get(), residuals); |
| } |
| |
| template <typename JetT> |
| bool operator()(const JetT* x0, |
| const JetT* x1, |
| const JetT* x2, |
| const JetT* x3, |
| const JetT* x4, |
| const JetT* x5, |
| const JetT* x6, |
| const JetT* x7, |
| const JetT* x8, |
| JetT* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_NE(N4, 0); |
| CHECK_NE(N5, 0); |
| CHECK_NE(N6, 0); |
| CHECK_NE(N7, 0); |
| CHECK_NE(N8, 0); |
| CHECK_EQ(N9, 0); |
| internal::FixedArray<const JetT*> jets(9); |
| jets[0] = x0; |
| jets[1] = x1; |
| jets[2] = x2; |
| jets[3] = x3; |
| jets[4] = x4; |
| jets[5] = x5; |
| jets[6] = x6; |
| jets[7] = x7; |
| jets[8] = x8; |
| return EvaluateWithJets(jets.get(), residuals); |
| } |
| |
| template <typename JetT> |
| bool operator()(const JetT* x0, |
| const JetT* x1, |
| const JetT* x2, |
| const JetT* x3, |
| const JetT* x4, |
| const JetT* x5, |
| const JetT* x6, |
| const JetT* x7, |
| const JetT* x8, |
| const JetT* x9, |
| JetT* residuals) const { |
| CHECK_NE(N0, 0); |
| CHECK_NE(N1, 0); |
| CHECK_NE(N2, 0); |
| CHECK_NE(N3, 0); |
| CHECK_NE(N4, 0); |
| CHECK_NE(N5, 0); |
| CHECK_NE(N6, 0); |
| CHECK_NE(N7, 0); |
| CHECK_NE(N8, 0); |
| CHECK_NE(N9, 0); |
| internal::FixedArray<const JetT*> jets(10); |
| jets[0] = x0; |
| jets[1] = x1; |
| jets[2] = x2; |
| jets[3] = x3; |
| jets[4] = x4; |
| jets[5] = x5; |
| jets[6] = x6; |
| jets[7] = x7; |
| jets[8] = x8; |
| jets[9] = x9; |
| return EvaluateWithJets(jets.get(), residuals); |
| } |
| |
| private: |
| template <typename JetT> |
| bool EvaluateWithJets(const JetT** inputs, JetT* output) const { |
| const int kNumParameters = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9; |
| const vector<int32>& parameter_block_sizes = |
| cost_function_->parameter_block_sizes(); |
| const int num_parameter_blocks = parameter_block_sizes.size(); |
| const int num_residuals = cost_function_->num_residuals(); |
| |
| internal::FixedArray<double> parameters(kNumParameters); |
| internal::FixedArray<double*> parameter_blocks(num_parameter_blocks); |
| internal::FixedArray<double> jacobians(num_residuals * kNumParameters); |
| internal::FixedArray<double*> jacobian_blocks(num_parameter_blocks); |
| internal::FixedArray<double> residuals(num_residuals); |
| |
| // Build a set of arrays to get the residuals and jacobians from |
| // the CostFunction wrapped by this functor. |
| double* parameter_ptr = parameters.get(); |
| double* jacobian_ptr = jacobians.get(); |
| for (int i = 0; i < num_parameter_blocks; ++i) { |
| parameter_blocks[i] = parameter_ptr; |
| jacobian_blocks[i] = jacobian_ptr; |
| for (int j = 0; j < parameter_block_sizes[i]; ++j) { |
| *parameter_ptr++ = inputs[i][j].a; |
| } |
| jacobian_ptr += num_residuals * parameter_block_sizes[i]; |
| } |
| |
| if (!cost_function_->Evaluate(parameter_blocks.get(), |
| residuals.get(), |
| jacobian_blocks.get())) { |
| return false; |
| } |
| |
| // Now that we have the incoming Jets, which are carrying the |
| // partial derivatives of each of the inputs w.r.t to some other |
| // underlying parameters. The derivative of the outputs of the |
| // cost function w.r.t to the same underlying parameters can now |
| // be computed by applying the chain rule. |
| // |
| // d output[i] d output[i] d input[j] |
| // -------------- = sum_j ----------- * ------------ |
| // d parameter[k] d input[j] d parameter[k] |
| // |
| // d input[j] |
| // -------------- = inputs[j], so |
| // d parameter[k] |
| // |
| // outputJet[i] = sum_k jacobian[i][k] * inputJet[k] |
| // |
| // The following loop, iterates over the residuals, computing one |
| // output jet at a time. |
| for (int i = 0; i < num_residuals; ++i) { |
| output[i].a = residuals[i]; |
| output[i].v.setZero(); |
| |
| for (int j = 0; j < num_parameter_blocks; ++j) { |
| const int32 block_size = parameter_block_sizes[j]; |
| for (int k = 0; k < parameter_block_sizes[j]; ++k) { |
| output[i].v += |
| jacobian_blocks[j][i * block_size + k] * inputs[j][k].v; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| private: |
| internal::scoped_ptr<CostFunction> cost_function_; |
| }; |
| |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_ |