| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| // |
| // A simple implementation of N-dimensional dual numbers, for automatically |
| // computing exact derivatives of functions. |
| // |
| // While a complete treatment of the mechanics of automatic differentation is |
| // beyond the scope of this header (see |
| // http://en.wikipedia.org/wiki/Automatic_differentiation for details), the |
| // basic idea is to extend normal arithmetic with an extra element, "e," often |
| // denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual |
| // numbers are extensions of the real numbers analogous to complex numbers: |
| // whereas complex numbers augment the reals by introducing an imaginary unit i |
| // such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such |
| // that e^2 = 0. Dual numbers have two components: the "real" component and the |
| // "infinitesimal" component, generally written as x + y*e. Surprisingly, this |
| // leads to a convenient method for computing exact derivatives without needing |
| // to manipulate complicated symbolic expressions. |
| // |
| // For example, consider the function |
| // |
| // f(x) = x^2 , |
| // |
| // evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20. |
| // Next, augument 10 with an infinitesimal to get: |
| // |
| // f(10 + e) = (10 + e)^2 |
| // = 100 + 2 * 10 * e + e^2 |
| // = 100 + 20 * e -+- |
| // -- | |
| // | +--- This is zero, since e^2 = 0 |
| // | |
| // +----------------- This is df/dx! |
| // |
| // Note that the derivative of f with respect to x is simply the infinitesimal |
| // component of the value of f(x + e). So, in order to take the derivative of |
| // any function, it is only necessary to replace the numeric "object" used in |
| // the function with one extended with infinitesimals. The class Jet, defined in |
| // this header, is one such example of this, where substitution is done with |
| // templates. |
| // |
| // To handle derivatives of functions taking multiple arguments, different |
| // infinitesimals are used, one for each variable to take the derivative of. For |
| // example, consider a scalar function of two scalar parameters x and y: |
| // |
| // f(x, y) = x^2 + x * y |
| // |
| // Following the technique above, to compute the derivatives df/dx and df/dy for |
| // f(1, 3) involves doing two evaluations of f, the first time replacing x with |
| // x + e, the second time replacing y with y + e. |
| // |
| // For df/dx: |
| // |
| // f(1 + e, y) = (1 + e)^2 + (1 + e) * 3 |
| // = 1 + 2 * e + 3 + 3 * e |
| // = 4 + 5 * e |
| // |
| // --> df/dx = 5 |
| // |
| // For df/dy: |
| // |
| // f(1, 3 + e) = 1^2 + 1 * (3 + e) |
| // = 1 + 3 + e |
| // = 4 + e |
| // |
| // --> df/dy = 1 |
| // |
| // To take the gradient of f with the implementation of dual numbers ("jets") in |
| // this file, it is necessary to create a single jet type which has components |
| // for the derivative in x and y, and passing them to a templated version of f: |
| // |
| // template<typename T> |
| // T f(const T &x, const T &y) { |
| // return x * x + x * y; |
| // } |
| // |
| // // The "2" means there should be 2 dual number components. |
| // Jet<double, 2> x(0); // Pick the 0th dual number for x. |
| // Jet<double, 2> y(1); // Pick the 1st dual number for y. |
| // Jet<double, 2> z = f(x, y); |
| // |
| // LOG(INFO) << "df/dx = " << z.a[0] |
| // << "df/dy = " << z.a[1]; |
| // |
| // Most users should not use Jet objects directly; a wrapper around Jet objects, |
| // which makes computing the derivative, gradient, or jacobian of templated |
| // functors simple, is in autodiff.h. Even autodiff.h should not be used |
| // directly; instead autodiff_cost_function.h is typically the file of interest. |
| // |
| // For the more mathematically inclined, this file implements first-order |
| // "jets". A 1st order jet is an element of the ring |
| // |
| // T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2 |
| // |
| // which essentially means that each jet consists of a "scalar" value 'a' from T |
| // and a 1st order perturbation vector 'v' of length N: |
| // |
| // x = a + \sum_i v[i] t_i |
| // |
| // A shorthand is to write an element as x = a + u, where u is the pertubation. |
| // Then, the main point about the arithmetic of jets is that the product of |
| // perturbations is zero: |
| // |
| // (a + u) * (b + v) = ab + av + bu + uv |
| // = ab + (av + bu) + 0 |
| // |
| // which is what operator* implements below. Addition is simpler: |
| // |
| // (a + u) + (b + v) = (a + b) + (u + v). |
| // |
| // The only remaining question is how to evaluate the function of a jet, for |
| // which we use the chain rule: |
| // |
| // f(a + u) = f(a) + f'(a) u |
| // |
| // where f'(a) is the (scalar) derivative of f at a. |
| // |
| // By pushing these things through sufficiently and suitably templated |
| // functions, we can do automatic differentiation. Just be sure to turn on |
| // function inlining and common-subexpression elimination, or it will be very |
| // slow! |
| // |
| // WARNING: Most Ceres users should not directly include this file or know the |
| // details of how jets work. Instead the suggested method for automatic |
| // derivatives is to use autodiff_cost_function.h, which is a wrapper around |
| // both jets.h and autodiff.h to make taking derivatives of cost functions for |
| // use in Ceres easier. |
| |
| #ifndef CERES_PUBLIC_JET_H_ |
| #define CERES_PUBLIC_JET_H_ |
| |
| #include <cmath> |
| #include <iosfwd> |
| #include <iostream> // NOLINT |
| #include <string> |
| |
| #include "Eigen/Core" |
| #include "ceres/fpclassify.h" |
| |
| namespace ceres { |
| |
| template <typename T, int N> |
| struct Jet { |
| enum { DIMENSION = N }; |
| |
| // Default-construct "a" because otherwise this can lead to false errors about |
| // uninitialized uses when other classes relying on default constructed T |
| // (where T is a Jet<T, N>). This usually only happens in opt mode. Note that |
| // the C++ standard mandates that e.g. default constructed doubles are |
| // initialized to 0.0; see sections 8.5 of the C++03 standard. |
| Jet() : a() { |
| v.setZero(); |
| } |
| |
| // Constructor from scalar: a + 0. |
| explicit Jet(const T& value) { |
| a = value; |
| v.setZero(); |
| } |
| |
| // Constructor from scalar plus variable: a + t_i. |
| Jet(const T& value, int k) { |
| a = value; |
| v.setZero(); |
| v[k] = T(1.0); |
| } |
| |
| // Constructor from scalar and vector part |
| // The use of Eigen::DenseBase allows Eigen expressions |
| // to be passed in without being fully evaluated until |
| // they are assigned to v |
| template<typename Derived> |
| Jet(const T& value, const Eigen::DenseBase<Derived> &vIn) |
| : a(value), |
| v(vIn) |
| { |
| } |
| |
| // Compound operators |
| Jet<T, N>& operator+=(const Jet<T, N> &y) { |
| *this = *this + y; |
| return *this; |
| } |
| |
| Jet<T, N>& operator-=(const Jet<T, N> &y) { |
| *this = *this - y; |
| return *this; |
| } |
| |
| Jet<T, N>& operator*=(const Jet<T, N> &y) { |
| *this = *this * y; |
| return *this; |
| } |
| |
| Jet<T, N>& operator/=(const Jet<T, N> &y) { |
| *this = *this / y; |
| return *this; |
| } |
| |
| // The scalar part. |
| T a; |
| |
| // The infinitesimal part. |
| // |
| // Note the Eigen::DontAlign bit is needed here because this object |
| // gets allocated on the stack and as part of other arrays and |
| // structs. Forcing the right alignment there is the source of much |
| // pain and suffering. Even if that works, passing Jets around to |
| // functions by value has problems because the C++ ABI does not |
| // guarantee alignment for function arguments. |
| // |
| // Setting the DontAlign bit prevents Eigen from using SSE for the |
| // various operations on Jets. This is a small performance penalty |
| // since the AutoDiff code will still expose much of the code as |
| // statically sized loops to the compiler. But given the subtle |
| // issues that arise due to alignment, especially when dealing with |
| // multiple platforms, it seems to be a trade off worth making. |
| Eigen::Matrix<T, N, 1, Eigen::DontAlign> v; |
| }; |
| |
| // Unary + |
| template<typename T, int N> inline |
| Jet<T, N> const& operator+(const Jet<T, N>& f) { |
| return f; |
| } |
| |
| // TODO(keir): Try adding __attribute__((always_inline)) to these functions to |
| // see if it causes a performance increase. |
| |
| // Unary - |
| template<typename T, int N> inline |
| Jet<T, N> operator-(const Jet<T, N>&f) { |
| return Jet<T, N>(-f.a, -f.v); |
| } |
| |
| // Binary + |
| template<typename T, int N> inline |
| Jet<T, N> operator+(const Jet<T, N>& f, |
| const Jet<T, N>& g) { |
| return Jet<T, N>(f.a + g.a, f.v + g.v); |
| } |
| |
| // Binary + with a scalar: x + s |
| template<typename T, int N> inline |
| Jet<T, N> operator+(const Jet<T, N>& f, T s) { |
| return Jet<T, N>(f.a + s, f.v); |
| } |
| |
| // Binary + with a scalar: s + x |
| template<typename T, int N> inline |
| Jet<T, N> operator+(T s, const Jet<T, N>& f) { |
| return Jet<T, N>(f.a + s, f.v); |
| } |
| |
| // Binary - |
| template<typename T, int N> inline |
| Jet<T, N> operator-(const Jet<T, N>& f, |
| const Jet<T, N>& g) { |
| return Jet<T, N>(f.a - g.a, f.v - g.v); |
| } |
| |
| // Binary - with a scalar: x - s |
| template<typename T, int N> inline |
| Jet<T, N> operator-(const Jet<T, N>& f, T s) { |
| return Jet<T, N>(f.a - s, f.v); |
| } |
| |
| // Binary - with a scalar: s - x |
| template<typename T, int N> inline |
| Jet<T, N> operator-(T s, const Jet<T, N>& f) { |
| return Jet<T, N>(s - f.a, -f.v); |
| } |
| |
| // Binary * |
| template<typename T, int N> inline |
| Jet<T, N> operator*(const Jet<T, N>& f, |
| const Jet<T, N>& g) { |
| return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a); |
| } |
| |
| // Binary * with a scalar: x * s |
| template<typename T, int N> inline |
| Jet<T, N> operator*(const Jet<T, N>& f, T s) { |
| return Jet<T, N>(f.a * s, f.v * s); |
| } |
| |
| // Binary * with a scalar: s * x |
| template<typename T, int N> inline |
| Jet<T, N> operator*(T s, const Jet<T, N>& f) { |
| return Jet<T, N>(f.a * s, f.v * s); |
| } |
| |
| // Binary / |
| template<typename T, int N> inline |
| Jet<T, N> operator/(const Jet<T, N>& f, |
| const Jet<T, N>& g) { |
| // This uses: |
| // |
| // a + u (a + u)(b - v) (a + u)(b - v) |
| // ----- = -------------- = -------------- |
| // b + v (b + v)(b - v) b^2 |
| // |
| // which holds because v*v = 0. |
| const T g_a_inverse = T(1.0) / g.a; |
| const T f_a_by_g_a = f.a * g_a_inverse; |
| return Jet<T, N>(f.a * g_a_inverse, (f.v - f_a_by_g_a * g.v) * g_a_inverse); |
| } |
| |
| // Binary / with a scalar: s / x |
| template<typename T, int N> inline |
| Jet<T, N> operator/(T s, const Jet<T, N>& g) { |
| const T minus_s_g_a_inverse2 = -s / (g.a * g.a); |
| return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2); |
| } |
| |
| // Binary / with a scalar: x / s |
| template<typename T, int N> inline |
| Jet<T, N> operator/(const Jet<T, N>& f, T s) { |
| const T s_inverse = 1.0 / s; |
| return Jet<T, N>(f.a * s_inverse, f.v * s_inverse); |
| } |
| |
| // Binary comparison operators for both scalars and jets. |
| #define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \ |
| template<typename T, int N> inline \ |
| bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \ |
| return f.a op g.a; \ |
| } \ |
| template<typename T, int N> inline \ |
| bool operator op(const T& s, const Jet<T, N>& g) { \ |
| return s op g.a; \ |
| } \ |
| template<typename T, int N> inline \ |
| bool operator op(const Jet<T, N>& f, const T& s) { \ |
| return f.a op s; \ |
| } |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( < ) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( <= ) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( > ) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( >= ) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( == ) // NOLINT |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( != ) // NOLINT |
| #undef CERES_DEFINE_JET_COMPARISON_OPERATOR |
| |
| // Pull some functions from namespace std. |
| // |
| // This is necessary because we want to use the same name (e.g. 'sqrt') for |
| // double-valued and Jet-valued functions, but we are not allowed to put |
| // Jet-valued functions inside namespace std. |
| // |
| // TODO(keir): Switch to "using". |
| inline double abs (double x) { return std::abs(x); } |
| inline double log (double x) { return std::log(x); } |
| inline double exp (double x) { return std::exp(x); } |
| inline double sqrt (double x) { return std::sqrt(x); } |
| inline double cos (double x) { return std::cos(x); } |
| inline double acos (double x) { return std::acos(x); } |
| inline double sin (double x) { return std::sin(x); } |
| inline double asin (double x) { return std::asin(x); } |
| inline double tan (double x) { return std::tan(x); } |
| inline double atan (double x) { return std::atan(x); } |
| inline double sinh (double x) { return std::sinh(x); } |
| inline double cosh (double x) { return std::cosh(x); } |
| inline double tanh (double x) { return std::tanh(x); } |
| inline double pow (double x, double y) { return std::pow(x, y); } |
| inline double atan2(double y, double x) { return std::atan2(y, x); } |
| |
| // In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule. |
| |
| // abs(x + h) ~= x + h or -(x + h) |
| template <typename T, int N> inline |
| Jet<T, N> abs(const Jet<T, N>& f) { |
| return f.a < T(0.0) ? -f : f; |
| } |
| |
| // log(a + h) ~= log(a) + h / a |
| template <typename T, int N> inline |
| Jet<T, N> log(const Jet<T, N>& f) { |
| const T a_inverse = T(1.0) / f.a; |
| return Jet<T, N>(log(f.a), f.v * a_inverse); |
| } |
| |
| // exp(a + h) ~= exp(a) + exp(a) h |
| template <typename T, int N> inline |
| Jet<T, N> exp(const Jet<T, N>& f) { |
| const T tmp = exp(f.a); |
| return Jet<T, N>(tmp, tmp * f.v); |
| } |
| |
| // sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a)) |
| template <typename T, int N> inline |
| Jet<T, N> sqrt(const Jet<T, N>& f) { |
| const T tmp = sqrt(f.a); |
| const T two_a_inverse = T(1.0) / (T(2.0) * tmp); |
| return Jet<T, N>(tmp, f.v * two_a_inverse); |
| } |
| |
| // cos(a + h) ~= cos(a) - sin(a) h |
| template <typename T, int N> inline |
| Jet<T, N> cos(const Jet<T, N>& f) { |
| return Jet<T, N>(cos(f.a), - sin(f.a) * f.v); |
| } |
| |
| // acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h |
| template <typename T, int N> inline |
| Jet<T, N> acos(const Jet<T, N>& f) { |
| const T tmp = - T(1.0) / sqrt(T(1.0) - f.a * f.a); |
| return Jet<T, N>(acos(f.a), tmp * f.v); |
| } |
| |
| // sin(a + h) ~= sin(a) + cos(a) h |
| template <typename T, int N> inline |
| Jet<T, N> sin(const Jet<T, N>& f) { |
| return Jet<T, N>(sin(f.a), cos(f.a) * f.v); |
| } |
| |
| // asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h |
| template <typename T, int N> inline |
| Jet<T, N> asin(const Jet<T, N>& f) { |
| const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a); |
| return Jet<T, N>(asin(f.a), tmp * f.v); |
| } |
| |
| // tan(a + h) ~= tan(a) + (1 + tan(a)^2) h |
| template <typename T, int N> inline |
| Jet<T, N> tan(const Jet<T, N>& f) { |
| const T tan_a = tan(f.a); |
| const T tmp = T(1.0) + tan_a * tan_a; |
| return Jet<T, N>(tan_a, tmp * f.v); |
| } |
| |
| // atan(a + h) ~= atan(a) + 1 / (1 + a^2) h |
| template <typename T, int N> inline |
| Jet<T, N> atan(const Jet<T, N>& f) { |
| const T tmp = T(1.0) / (T(1.0) + f.a * f.a); |
| return Jet<T, N>(atan(f.a), tmp * f.v); |
| } |
| |
| // sinh(a + h) ~= sinh(a) + cosh(a) h |
| template <typename T, int N> inline |
| Jet<T, N> sinh(const Jet<T, N>& f) { |
| return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v); |
| } |
| |
| // cosh(a + h) ~= cosh(a) + sinh(a) h |
| template <typename T, int N> inline |
| Jet<T, N> cosh(const Jet<T, N>& f) { |
| return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v); |
| } |
| |
| // tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h |
| template <typename T, int N> inline |
| Jet<T, N> tanh(const Jet<T, N>& f) { |
| const T tanh_a = tanh(f.a); |
| const T tmp = T(1.0) - tanh_a * tanh_a; |
| return Jet<T, N>(tanh_a, tmp * f.v); |
| } |
| |
| // Jet Classification. It is not clear what the appropriate semantics are for |
| // these classifications. This picks that IsFinite and isnormal are "all" |
| // operations, i.e. all elements of the jet must be finite for the jet itself |
| // to be finite (or normal). For IsNaN and IsInfinite, the answer is less |
| // clear. This takes a "any" approach for IsNaN and IsInfinite such that if any |
| // part of a jet is nan or inf, then the entire jet is nan or inf. This leads |
| // to strange situations like a jet can be both IsInfinite and IsNaN, but in |
| // practice the "any" semantics are the most useful for e.g. checking that |
| // derivatives are sane. |
| |
| // The jet is finite if all parts of the jet are finite. |
| template <typename T, int N> inline |
| bool IsFinite(const Jet<T, N>& f) { |
| if (!IsFinite(f.a)) { |
| return false; |
| } |
| for (int i = 0; i < N; ++i) { |
| if (!IsFinite(f.v[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // The jet is infinite if any part of the jet is infinite. |
| template <typename T, int N> inline |
| bool IsInfinite(const Jet<T, N>& f) { |
| if (IsInfinite(f.a)) { |
| return true; |
| } |
| for (int i = 0; i < N; i++) { |
| if (IsInfinite(f.v[i])) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // The jet is NaN if any part of the jet is NaN. |
| template <typename T, int N> inline |
| bool IsNaN(const Jet<T, N>& f) { |
| if (IsNaN(f.a)) { |
| return true; |
| } |
| for (int i = 0; i < N; ++i) { |
| if (IsNaN(f.v[i])) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // The jet is normal if all parts of the jet are normal. |
| template <typename T, int N> inline |
| bool IsNormal(const Jet<T, N>& f) { |
| if (!IsNormal(f.a)) { |
| return false; |
| } |
| for (int i = 0; i < N; ++i) { |
| if (!IsNormal(f.v[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2) |
| // |
| // In words: the rate of change of theta is 1/r times the rate of |
| // change of (x, y) in the positive angular direction. |
| template <typename T, int N> inline |
| Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) { |
| // Note order of arguments: |
| // |
| // f = a + da |
| // g = b + db |
| |
| T const tmp = T(1.0) / (f.a * f.a + g.a * g.a); |
| return Jet<T, N>(atan2(g.a, f.a), tmp * (- g.a * f.v + f.a * g.v)); |
| } |
| |
| |
| // pow -- base is a differentiable function, exponent is a constant. |
| // (a+da)^p ~= a^p + p*a^(p-1) da |
| template <typename T, int N> inline |
| Jet<T, N> pow(const Jet<T, N>& f, double g) { |
| T const tmp = g * pow(f.a, g - T(1.0)); |
| return Jet<T, N>(pow(f.a, g), tmp * f.v); |
| } |
| |
| // pow -- base is a constant, exponent is a differentiable function. |
| // (a)^(p+dp) ~= a^p + a^p log(a) dp |
| template <typename T, int N> inline |
| Jet<T, N> pow(double f, const Jet<T, N>& g) { |
| T const tmp = pow(f, g.a); |
| return Jet<T, N>(tmp, log(f) * tmp * g.v); |
| } |
| |
| |
| // pow -- both base and exponent are differentiable functions. |
| // (a+da)^(b+db) ~= a^b + b * a^(b-1) da + a^b log(a) * db |
| template <typename T, int N> inline |
| Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) { |
| T const tmp1 = pow(f.a, g.a); |
| T const tmp2 = g.a * pow(f.a, g.a - T(1.0)); |
| T const tmp3 = tmp1 * log(f.a); |
| |
| return Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v); |
| } |
| |
| // Define the helper functions Eigen needs to embed Jet types. |
| // |
| // NOTE(keir): machine_epsilon() and precision() are missing, because they don't |
| // work with nested template types (e.g. where the scalar is itself templated). |
| // Among other things, this means that decompositions of Jet's does not work, |
| // for example |
| // |
| // Matrix<Jet<T, N> ... > A, x, b; |
| // ... |
| // A.solve(b, &x) |
| // |
| // does not work and will fail with a strange compiler error. |
| // |
| // TODO(keir): This is an Eigen 2.0 limitation that is lifted in 3.0. When we |
| // switch to 3.0, also add the rest of the specialization functionality. |
| template<typename T, int N> inline const Jet<T, N>& ei_conj(const Jet<T, N>& x) { return x; } // NOLINT |
| template<typename T, int N> inline const Jet<T, N>& ei_real(const Jet<T, N>& x) { return x; } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_imag(const Jet<T, N>& ) { return Jet<T, N>(0.0); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_abs (const Jet<T, N>& x) { return fabs(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_abs2(const Jet<T, N>& x) { return x * x; } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_sqrt(const Jet<T, N>& x) { return sqrt(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_exp (const Jet<T, N>& x) { return exp(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_log (const Jet<T, N>& x) { return log(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_sin (const Jet<T, N>& x) { return sin(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_cos (const Jet<T, N>& x) { return cos(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_tan (const Jet<T, N>& x) { return tan(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_atan(const Jet<T, N>& x) { return atan(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_sinh(const Jet<T, N>& x) { return sinh(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_cosh(const Jet<T, N>& x) { return cosh(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_tanh(const Jet<T, N>& x) { return tanh(x); } // NOLINT |
| template<typename T, int N> inline Jet<T, N> ei_pow (const Jet<T, N>& x, Jet<T, N> y) { return pow(x, y); } // NOLINT |
| |
| // Note: This has to be in the ceres namespace for argument dependent lookup to |
| // function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with |
| // strange compile errors. |
| template <typename T, int N> |
| inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) { |
| return s << "[" << z.a << " ; " << z.v.transpose() << "]"; |
| } |
| |
| } // namespace ceres |
| |
| namespace Eigen { |
| |
| // Creating a specialization of NumTraits enables placing Jet objects inside |
| // Eigen arrays, getting all the goodness of Eigen combined with autodiff. |
| template<typename T, int N> |
| struct NumTraits<ceres::Jet<T, N> > { |
| typedef ceres::Jet<T, N> Real; |
| typedef ceres::Jet<T, N> NonInteger; |
| typedef ceres::Jet<T, N> Nested; |
| |
| static typename ceres::Jet<T, N> dummy_precision() { |
| return ceres::Jet<T, N>(1e-12); |
| } |
| |
| static inline Real epsilon() { return Real(std::numeric_limits<T>::epsilon()); } |
| |
| enum { |
| IsComplex = 0, |
| IsInteger = 0, |
| IsSigned, |
| ReadCost = 1, |
| AddCost = 1, |
| // For Jet types, multiplication is more expensive than addition. |
| MulCost = 3, |
| HasFloatingPoint = 1, |
| RequireInitialization = 1 |
| }; |
| }; |
| |
| } // namespace Eigen |
| |
| #endif // CERES_PUBLIC_JET_H_ |