| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2013 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/incomplete_lq_factorization.h" |
| |
| #include <vector> |
| #include <utility> |
| #include <cmath> |
| #include "ceres/compressed_row_sparse_matrix.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/port.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| // Normalize a row and return it's norm. |
| inline double NormalizeRow(const int row, CompressedRowSparseMatrix* matrix) { |
| const int row_begin = matrix->rows()[row]; |
| const int row_end = matrix->rows()[row + 1]; |
| |
| double* values = matrix->mutable_values(); |
| double norm = 0.0; |
| for (int i = row_begin; i < row_end; ++i) { |
| norm += values[i] * values[i]; |
| } |
| |
| norm = sqrt(norm); |
| const double inverse_norm = 1.0 / norm; |
| for (int i = row_begin; i < row_end; ++i) { |
| values[i] *= inverse_norm; |
| } |
| |
| return norm; |
| } |
| |
| // Compute a(row_a,:) * b(row_b, :)' |
| inline double RowDotProduct(const CompressedRowSparseMatrix& a, |
| const int row_a, |
| const CompressedRowSparseMatrix& b, |
| const int row_b) { |
| const int* a_rows = a.rows(); |
| const int* a_cols = a.cols(); |
| const double* a_values = a.values(); |
| |
| const int* b_rows = b.rows(); |
| const int* b_cols = b.cols(); |
| const double* b_values = b.values(); |
| |
| const int row_a_end = a_rows[row_a + 1]; |
| const int row_b_end = b_rows[row_b + 1]; |
| |
| int idx_a = a_rows[row_a]; |
| int idx_b = b_rows[row_b]; |
| double dot_product = 0.0; |
| while (idx_a < row_a_end && idx_b < row_b_end) { |
| if (a_cols[idx_a] == b_cols[idx_b]) { |
| dot_product += a_values[idx_a++] * b_values[idx_b++]; |
| } |
| |
| while (a_cols[idx_a] < b_cols[idx_b] && idx_a < row_a_end) { |
| ++idx_a; |
| } |
| |
| while (a_cols[idx_a] > b_cols[idx_b] && idx_b < row_b_end) { |
| ++idx_b; |
| } |
| } |
| |
| return dot_product; |
| } |
| |
| struct SecondGreaterThan { |
| public: |
| bool operator()(const pair<int, double>& lhs, |
| const pair<int, double>& rhs) const { |
| return (fabs(lhs.second) > fabs(rhs.second)); |
| } |
| }; |
| |
| // In the row vector dense_row(0:num_cols), drop values smaller than |
| // the max_value * drop_tolerance. Of the remaining non-zero values, |
| // choose at most level_of_fill values and then add the resulting row |
| // vector to matrix. |
| |
| void DropEntriesAndAddRow(const Vector& dense_row, |
| const int num_entries, |
| const int level_of_fill, |
| const double drop_tolerance, |
| vector<pair<int, double> >* scratch, |
| CompressedRowSparseMatrix* matrix) { |
| int* rows = matrix->mutable_rows(); |
| int* cols = matrix->mutable_cols(); |
| double* values = matrix->mutable_values(); |
| int num_nonzeros = rows[matrix->num_rows()]; |
| |
| if (num_entries == 0) { |
| matrix->set_num_rows(matrix->num_rows() + 1); |
| rows[matrix->num_rows()] = num_nonzeros; |
| return; |
| } |
| |
| const double max_value = dense_row.head(num_entries).cwiseAbs().maxCoeff(); |
| const double threshold = drop_tolerance * max_value; |
| |
| int scratch_count = 0; |
| for (int i = 0; i < num_entries; ++i) { |
| if (fabs(dense_row[i]) > threshold) { |
| pair<int, double>& entry = (*scratch)[scratch_count]; |
| entry.first = i; |
| entry.second = dense_row[i]; |
| ++scratch_count; |
| } |
| } |
| |
| if (scratch_count > level_of_fill) { |
| nth_element(scratch->begin(), |
| scratch->begin() + level_of_fill, |
| scratch->begin() + scratch_count, |
| SecondGreaterThan()); |
| scratch_count = level_of_fill; |
| sort(scratch->begin(), scratch->begin() + scratch_count); |
| } |
| |
| for (int i = 0; i < scratch_count; ++i) { |
| const pair<int, double>& entry = (*scratch)[i]; |
| cols[num_nonzeros] = entry.first; |
| values[num_nonzeros] = entry.second; |
| ++num_nonzeros; |
| } |
| |
| matrix->set_num_rows(matrix->num_rows() + 1); |
| rows[matrix->num_rows()] = num_nonzeros; |
| } |
| |
| // Saad's Incomplete LQ factorization algorithm. |
| CompressedRowSparseMatrix* IncompleteLQFactorization( |
| const CompressedRowSparseMatrix& matrix, |
| const int l_level_of_fill, |
| const double l_drop_tolerance, |
| const int q_level_of_fill, |
| const double q_drop_tolerance) { |
| const int num_rows = matrix.num_rows(); |
| const int num_cols = matrix.num_cols(); |
| const int* rows = matrix.rows(); |
| const int* cols = matrix.cols(); |
| const double* values = matrix.values(); |
| |
| CompressedRowSparseMatrix* l = |
| new CompressedRowSparseMatrix(num_rows, |
| num_rows, |
| l_level_of_fill * num_rows); |
| l->set_num_rows(0); |
| |
| CompressedRowSparseMatrix q(num_rows, num_cols, q_level_of_fill * num_rows); |
| q.set_num_rows(0); |
| |
| int* l_rows = l->mutable_rows(); |
| int* l_cols = l->mutable_cols(); |
| double* l_values = l->mutable_values(); |
| |
| int* q_rows = q.mutable_rows(); |
| int* q_cols = q.mutable_cols(); |
| double* q_values = q.mutable_values(); |
| |
| Vector l_i(num_rows); |
| Vector q_i(num_cols); |
| vector<pair<int, double> > scratch(num_cols); |
| for (int i = 0; i < num_rows; ++i) { |
| // l_i = q * matrix(i,:)'); |
| l_i.setZero(); |
| for (int j = 0; j < i; ++j) { |
| l_i(j) = RowDotProduct(matrix, i, q, j); |
| } |
| DropEntriesAndAddRow(l_i, |
| i, |
| l_level_of_fill, |
| l_drop_tolerance, |
| &scratch, |
| l); |
| |
| // q_i = matrix(i,:) - q(0:i-1,:) * l_i); |
| q_i.setZero(); |
| for (int idx = rows[i]; idx < rows[i + 1]; ++idx) { |
| q_i(cols[idx]) = values[idx]; |
| } |
| |
| for (int j = l_rows[i]; j < l_rows[i + 1]; ++j) { |
| const int r = l_cols[j]; |
| const double lij = l_values[j]; |
| for (int idx = q_rows[r]; idx < q_rows[r + 1]; ++idx) { |
| q_i(q_cols[idx]) -= lij * q_values[idx]; |
| } |
| } |
| DropEntriesAndAddRow(q_i, |
| num_cols, |
| q_level_of_fill, |
| q_drop_tolerance, |
| &scratch, |
| &q); |
| |
| // lii = |qi| |
| l_cols[l->num_nonzeros()] = i; |
| l_values[l->num_nonzeros()] = NormalizeRow(i, &q); |
| l_rows[l->num_rows()] += 1; |
| } |
| |
| return l; |
| } |
| |
| } // namespace internal |
| } // namespace ceres |