blob: 631add59bdb1d3fa2803d64848d384cfb48a8752 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
#ifndef CERES_INTERNAL_SOLVER_IMPL_H_
#define CERES_INTERNAL_SOLVER_IMPL_H_
#include <set>
#include <string>
#include <vector>
#include "ceres/internal/port.h"
#include "ceres/ordered_groups.h"
#include "ceres/problem_impl.h"
#include "ceres/solver.h"
namespace ceres {
namespace internal {
class CoordinateDescentMinimizer;
class Evaluator;
class LinearSolver;
class Program;
class TripletSparseMatrix;
class SolverImpl {
public:
// Mirrors the interface in solver.h, but exposes implementation
// details for testing internally.
static void Solve(const Solver::Options& options,
ProblemImpl* problem_impl,
Solver::Summary* summary);
static void TrustRegionSolve(const Solver::Options& options,
ProblemImpl* problem_impl,
Solver::Summary* summary);
// Run the TrustRegionMinimizer for the given evaluator and configuration.
static void TrustRegionMinimize(
const Solver::Options &options,
Program* program,
CoordinateDescentMinimizer* inner_iteration_minimizer,
Evaluator* evaluator,
LinearSolver* linear_solver,
Solver::Summary* summary);
static void LineSearchSolve(const Solver::Options& options,
ProblemImpl* problem_impl,
Solver::Summary* summary);
// Run the LineSearchMinimizer for the given evaluator and configuration.
static void LineSearchMinimize(const Solver::Options &options,
Program* program,
Evaluator* evaluator,
Solver::Summary* summary);
// Create the transformed Program, which has all the fixed blocks
// and residuals eliminated, and in the case of automatic schur
// ordering, has the E blocks first in the resulting program, with
// options.num_eliminate_blocks set appropriately.
//
// If fixed_cost is not NULL, the residual blocks that are removed
// are evaluated and the sum of their cost is returned in fixed_cost.
static Program* CreateReducedProgram(Solver::Options* options,
ProblemImpl* problem_impl,
double* fixed_cost,
string* message);
// Create the appropriate linear solver, taking into account any
// config changes decided by CreateTransformedProgram(). The
// selected linear solver, which may be different from what the user
// selected; consider the case that the remaining elimininated
// blocks is zero after removing fixed blocks.
static LinearSolver* CreateLinearSolver(Solver::Options* options,
string* message);
// Reorder the residuals for program, if necessary, so that the
// residuals involving e block (i.e., the first num_eliminate_block
// parameter blocks) occur together. This is a necessary condition
// for the Schur eliminator.
static bool LexicographicallyOrderResidualBlocks(
const int num_eliminate_blocks,
Program* program,
string* message);
// Create the appropriate evaluator for the transformed program.
static Evaluator* CreateEvaluator(
const Solver::Options& options,
const ProblemImpl::ParameterMap& parameter_map,
Program* program,
string* message);
// Remove the fixed or unused parameter blocks and residuals
// depending only on fixed parameters from the program.
//
// If either linear_solver_ordering or inner_iteration_ordering are
// not NULL, the constant parameter blocks are removed from them
// too.
//
// If fixed_cost is not NULL, the residual blocks that are removed
// are evaluated and the sum of their cost is returned in
// fixed_cost.
//
// If a failure is encountered, the function returns false with a
// description of the failure in message.
static bool RemoveFixedBlocksFromProgram(
Program* program,
ParameterBlockOrdering* linear_solver_ordering,
ParameterBlockOrdering* inner_iteration_ordering,
double* fixed_cost,
string* message);
static bool IsOrderingValid(const Solver::Options& options,
const ProblemImpl* problem_impl,
string* message);
static bool IsParameterBlockSetIndependent(
const set<double*>& parameter_block_ptrs,
const vector<ResidualBlock*>& residual_blocks);
static CoordinateDescentMinimizer* CreateInnerIterationMinimizer(
const Solver::Options& options,
const Program& program,
const ProblemImpl::ParameterMap& parameter_map,
Solver::Summary* summary);
// If the linear solver is of Schur type, then replace it with the
// closest equivalent linear solver. This is done when the user
// requested a Schur type solver but the problem structure makes it
// impossible to use one.
//
// If the linear solver is not of Schur type, the function is a
// no-op.
static void AlternateLinearSolverForSchurTypeLinearSolver(
Solver::Options* options);
// Create a TripletSparseMatrix which contains the zero-one
// structure corresponding to the block sparsity of the transpose of
// the Jacobian matrix.
//
// Caller owns the result.
static TripletSparseMatrix* CreateJacobianBlockSparsityTranspose(
const Program* program);
// Reorder the parameter blocks in program using the ordering
static bool ApplyUserOrdering(
const ProblemImpl::ParameterMap& parameter_map,
const ParameterBlockOrdering* parameter_block_ordering,
Program* program,
string* message);
// Sparse cholesky factorization routines when doing the sparse
// cholesky factorization of the Jacobian matrix, reorders its
// columns to reduce the fill-in. Compute this permutation and
// re-order the parameter blocks.
//
// If the parameter_block_ordering contains more than one
// elimination group and support for constrained fill-reducing
// ordering is available in the sparse linear algebra library
// (SuiteSparse version >= 4.2.0) then the fill reducing
// ordering will take it into account, otherwise it will be ignored.
static bool ReorderProgramForSparseNormalCholesky(
const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
const ParameterBlockOrdering* parameter_block_ordering,
Program* program,
string* message);
// Schur type solvers require that all parameter blocks eliminated
// by the Schur eliminator occur before others and the residuals be
// sorted in lexicographic order of their parameter blocks.
//
// If the parameter_block_ordering only contains one elimination
// group then a maximal independent set is computed and used as the
// first elimination group, otherwise the user's ordering is used.
//
// If the linear solver type is SPARSE_SCHUR and support for
// constrained fill-reducing ordering is available in the sparse
// linear algebra library (SuiteSparse version >= 4.2.0) then
// columns of the schur complement matrix are ordered to reduce the
// fill-in the Cholesky factorization.
//
// Upon return, ordering contains the parameter block ordering that
// was used to order the program.
static bool ReorderProgramForSchurTypeLinearSolver(
const LinearSolverType linear_solver_type,
const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
const ProblemImpl::ParameterMap& parameter_map,
ParameterBlockOrdering* parameter_block_ordering,
Program* program,
string* message);
// array contains a list of (possibly repeating) non-negative
// integers. Let us assume that we have constructed another array
// `p` by sorting and uniqueing the entries of array.
// CompactifyArray replaces each entry in "array" with its position
// in `p`.
static void CompactifyArray(vector<int>* array);
};
} // namespace internal
} // namespace ceres
#endif // CERES_INTERNAL_SOLVER_IMPL_H_