| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // keir@google.com (Keir Mierle) |
| |
| #include "ceres/problem.h" |
| |
| #include <memory> |
| |
| #include "ceres/autodiff_cost_function.h" |
| #include "ceres/casts.h" |
| #include "ceres/cost_function.h" |
| #include "ceres/crs_matrix.h" |
| #include "ceres/evaluator_test_utils.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/local_parameterization.h" |
| #include "ceres/loss_function.h" |
| #include "ceres/map_util.h" |
| #include "ceres/parameter_block.h" |
| #include "ceres/problem_impl.h" |
| #include "ceres/program.h" |
| #include "ceres/sized_cost_function.h" |
| #include "ceres/sparse_matrix.h" |
| #include "ceres/types.h" |
| #include "gmock/gmock.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| using std::vector; |
| |
| // The following three classes are for the purposes of defining |
| // function signatures. They have dummy Evaluate functions. |
| |
| // Trivial cost function that accepts a single argument. |
| class UnaryCostFunction : public CostFunction { |
| public: |
| UnaryCostFunction(int num_residuals, int32_t parameter_block_size) { |
| set_num_residuals(num_residuals); |
| mutable_parameter_block_sizes()->push_back(parameter_block_size); |
| } |
| |
| virtual ~UnaryCostFunction() {} |
| |
| bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const final { |
| for (int i = 0; i < num_residuals(); ++i) { |
| residuals[i] = 1; |
| } |
| return true; |
| } |
| }; |
| |
| // Trivial cost function that accepts two arguments. |
| class BinaryCostFunction : public CostFunction { |
| public: |
| BinaryCostFunction(int num_residuals, |
| int32_t parameter_block1_size, |
| int32_t parameter_block2_size) { |
| set_num_residuals(num_residuals); |
| mutable_parameter_block_sizes()->push_back(parameter_block1_size); |
| mutable_parameter_block_sizes()->push_back(parameter_block2_size); |
| } |
| |
| bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const final { |
| for (int i = 0; i < num_residuals(); ++i) { |
| residuals[i] = 2; |
| } |
| return true; |
| } |
| }; |
| |
| // Trivial cost function that accepts three arguments. |
| class TernaryCostFunction : public CostFunction { |
| public: |
| TernaryCostFunction(int num_residuals, |
| int32_t parameter_block1_size, |
| int32_t parameter_block2_size, |
| int32_t parameter_block3_size) { |
| set_num_residuals(num_residuals); |
| mutable_parameter_block_sizes()->push_back(parameter_block1_size); |
| mutable_parameter_block_sizes()->push_back(parameter_block2_size); |
| mutable_parameter_block_sizes()->push_back(parameter_block3_size); |
| } |
| |
| bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const final { |
| for (int i = 0; i < num_residuals(); ++i) { |
| residuals[i] = 3; |
| } |
| return true; |
| } |
| }; |
| |
| TEST(Problem, MoveConstructor) { |
| Problem src; |
| double x; |
| src.AddParameterBlock(&x, 1); |
| Problem dst(std::move(src)); |
| EXPECT_TRUE(dst.HasParameterBlock(&x)); |
| } |
| |
| TEST(Problem, MoveAssignment) { |
| Problem src; |
| double x; |
| src.AddParameterBlock(&x, 1); |
| Problem dst; |
| dst = std::move(src); |
| EXPECT_TRUE(dst.HasParameterBlock(&x)); |
| } |
| |
| TEST(Problem, AddResidualWithNullCostFunctionDies) { |
| double x[3], y[4], z[5]; |
| |
| Problem problem; |
| problem.AddParameterBlock(x, 3); |
| problem.AddParameterBlock(y, 4); |
| problem.AddParameterBlock(z, 5); |
| |
| EXPECT_DEATH_IF_SUPPORTED(problem.AddResidualBlock(NULL, NULL, x), |
| "cost_function != nullptr"); |
| } |
| |
| TEST(Problem, AddResidualWithIncorrectNumberOfParameterBlocksDies) { |
| double x[3], y[4], z[5]; |
| |
| Problem problem; |
| problem.AddParameterBlock(x, 3); |
| problem.AddParameterBlock(y, 4); |
| problem.AddParameterBlock(z, 5); |
| |
| // UnaryCostFunction takes only one parameter, but two are passed. |
| EXPECT_DEATH_IF_SUPPORTED( |
| problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x, y), |
| "num_parameter_blocks"); |
| } |
| |
| TEST(Problem, AddResidualWithDifferentSizesOnTheSameVariableDies) { |
| double x[3]; |
| |
| Problem problem; |
| problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); |
| EXPECT_DEATH_IF_SUPPORTED( |
| problem.AddResidualBlock( |
| new UnaryCostFunction(2, 4 /* 4 != 3 */), NULL, x), |
| "different block sizes"); |
| } |
| |
| TEST(Problem, AddResidualWithDuplicateParametersDies) { |
| double x[3], z[5]; |
| |
| Problem problem; |
| EXPECT_DEATH_IF_SUPPORTED( |
| problem.AddResidualBlock(new BinaryCostFunction(2, 3, 3), NULL, x, x), |
| "Duplicate parameter blocks"); |
| EXPECT_DEATH_IF_SUPPORTED( |
| problem.AddResidualBlock( |
| new TernaryCostFunction(1, 5, 3, 5), NULL, z, x, z), |
| "Duplicate parameter blocks"); |
| } |
| |
| TEST(Problem, AddResidualWithIncorrectSizesOfParameterBlockDies) { |
| double x[3], y[4], z[5]; |
| |
| Problem problem; |
| problem.AddParameterBlock(x, 3); |
| problem.AddParameterBlock(y, 4); |
| problem.AddParameterBlock(z, 5); |
| |
| // The cost function expects the size of the second parameter, z, to be 4 |
| // instead of 5 as declared above. This is fatal. |
| EXPECT_DEATH_IF_SUPPORTED( |
| problem.AddResidualBlock(new BinaryCostFunction(2, 3, 4), NULL, x, z), |
| "different block sizes"); |
| } |
| |
| TEST(Problem, AddResidualAddsDuplicatedParametersOnlyOnce) { |
| double x[3], y[4], z[5]; |
| |
| Problem problem; |
| problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); |
| problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); |
| problem.AddResidualBlock(new UnaryCostFunction(2, 4), NULL, y); |
| problem.AddResidualBlock(new UnaryCostFunction(2, 5), NULL, z); |
| |
| EXPECT_EQ(3, problem.NumParameterBlocks()); |
| EXPECT_EQ(12, problem.NumParameters()); |
| } |
| |
| TEST(Problem, AddParameterWithDifferentSizesOnTheSameVariableDies) { |
| double x[3], y[4]; |
| |
| Problem problem; |
| problem.AddParameterBlock(x, 3); |
| problem.AddParameterBlock(y, 4); |
| |
| EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(x, 4), |
| "different block sizes"); |
| } |
| |
| static double* IntToPtr(int i) { |
| return reinterpret_cast<double*>(sizeof(double) * i); // NOLINT |
| } |
| |
| TEST(Problem, AddParameterWithAliasedParametersDies) { |
| // Layout is |
| // |
| // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
| // [x] x x x x [y] y y |
| // o==o==o o==o==o o==o |
| // o--o--o o--o--o o--o o--o--o |
| // |
| // Parameter block additions are tested as listed above; expected successful |
| // ones marked with o==o and aliasing ones marked with o--o. |
| |
| Problem problem; |
| problem.AddParameterBlock(IntToPtr(5), 5); // x |
| problem.AddParameterBlock(IntToPtr(13), 3); // y |
| |
| EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(4), 2), |
| "Aliasing detected"); |
| EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(4), 3), |
| "Aliasing detected"); |
| EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(4), 9), |
| "Aliasing detected"); |
| EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(8), 3), |
| "Aliasing detected"); |
| EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(12), 2), |
| "Aliasing detected"); |
| EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(14), 3), |
| "Aliasing detected"); |
| |
| // These ones should work. |
| problem.AddParameterBlock(IntToPtr(2), 3); |
| problem.AddParameterBlock(IntToPtr(10), 3); |
| problem.AddParameterBlock(IntToPtr(16), 2); |
| |
| ASSERT_EQ(5, problem.NumParameterBlocks()); |
| } |
| |
| TEST(Problem, AddParameterIgnoresDuplicateCalls) { |
| double x[3], y[4]; |
| |
| Problem problem; |
| problem.AddParameterBlock(x, 3); |
| problem.AddParameterBlock(y, 4); |
| |
| // Creating parameter blocks multiple times is ignored. |
| problem.AddParameterBlock(x, 3); |
| problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); |
| |
| // ... even repeatedly. |
| problem.AddParameterBlock(x, 3); |
| problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); |
| |
| // More parameters are fine. |
| problem.AddParameterBlock(y, 4); |
| problem.AddResidualBlock(new UnaryCostFunction(2, 4), NULL, y); |
| |
| EXPECT_EQ(2, problem.NumParameterBlocks()); |
| EXPECT_EQ(7, problem.NumParameters()); |
| } |
| |
| TEST(Problem, AddingParametersAndResidualsResultsInExpectedProblem) { |
| double x[3], y[4], z[5], w[4]; |
| |
| Problem problem; |
| problem.AddParameterBlock(x, 3); |
| EXPECT_EQ(1, problem.NumParameterBlocks()); |
| EXPECT_EQ(3, problem.NumParameters()); |
| |
| problem.AddParameterBlock(y, 4); |
| EXPECT_EQ(2, problem.NumParameterBlocks()); |
| EXPECT_EQ(7, problem.NumParameters()); |
| |
| problem.AddParameterBlock(z, 5); |
| EXPECT_EQ(3, problem.NumParameterBlocks()); |
| EXPECT_EQ(12, problem.NumParameters()); |
| |
| // Add a parameter that has a local parameterization. |
| w[0] = 1.0; |
| w[1] = 0.0; |
| w[2] = 0.0; |
| w[3] = 0.0; |
| problem.AddParameterBlock(w, 4, new QuaternionParameterization); |
| EXPECT_EQ(4, problem.NumParameterBlocks()); |
| EXPECT_EQ(16, problem.NumParameters()); |
| |
| problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); |
| problem.AddResidualBlock(new BinaryCostFunction(6, 5, 4), NULL, z, y); |
| problem.AddResidualBlock(new BinaryCostFunction(3, 3, 5), NULL, x, z); |
| problem.AddResidualBlock(new BinaryCostFunction(7, 5, 3), NULL, z, x); |
| problem.AddResidualBlock(new TernaryCostFunction(1, 5, 3, 4), NULL, z, x, y); |
| |
| const int total_residuals = 2 + 6 + 3 + 7 + 1; |
| EXPECT_EQ(problem.NumResidualBlocks(), 5); |
| EXPECT_EQ(problem.NumResiduals(), total_residuals); |
| } |
| |
| class DestructorCountingCostFunction : public SizedCostFunction<3, 4, 5> { |
| public: |
| explicit DestructorCountingCostFunction(int* num_destructions) |
| : num_destructions_(num_destructions) {} |
| |
| virtual ~DestructorCountingCostFunction() { *num_destructions_ += 1; } |
| |
| bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const final { |
| return true; |
| } |
| |
| private: |
| int* num_destructions_; |
| }; |
| |
| TEST(Problem, ReusedCostFunctionsAreOnlyDeletedOnce) { |
| double y[4], z[5]; |
| int num_destructions = 0; |
| |
| // Add a cost function multiple times and check to make sure that |
| // the destructor on the cost function is only called once. |
| { |
| Problem problem; |
| problem.AddParameterBlock(y, 4); |
| problem.AddParameterBlock(z, 5); |
| |
| CostFunction* cost = new DestructorCountingCostFunction(&num_destructions); |
| problem.AddResidualBlock(cost, NULL, y, z); |
| problem.AddResidualBlock(cost, NULL, y, z); |
| problem.AddResidualBlock(cost, NULL, y, z); |
| EXPECT_EQ(3, problem.NumResidualBlocks()); |
| } |
| |
| // Check that the destructor was called only once. |
| CHECK_EQ(num_destructions, 1); |
| } |
| |
| TEST(Problem, GetCostFunctionForResidualBlock) { |
| double x[3]; |
| Problem problem; |
| CostFunction* cost_function = new UnaryCostFunction(2, 3); |
| const ResidualBlockId residual_block = |
| problem.AddResidualBlock(cost_function, NULL, x); |
| EXPECT_EQ(problem.GetCostFunctionForResidualBlock(residual_block), |
| cost_function); |
| EXPECT_TRUE(problem.GetLossFunctionForResidualBlock(residual_block) == NULL); |
| } |
| |
| TEST(Problem, GetLossFunctionForResidualBlock) { |
| double x[3]; |
| Problem problem; |
| CostFunction* cost_function = new UnaryCostFunction(2, 3); |
| LossFunction* loss_function = new TrivialLoss(); |
| const ResidualBlockId residual_block = |
| problem.AddResidualBlock(cost_function, loss_function, x); |
| EXPECT_EQ(problem.GetCostFunctionForResidualBlock(residual_block), |
| cost_function); |
| EXPECT_EQ(problem.GetLossFunctionForResidualBlock(residual_block), |
| loss_function); |
| } |
| |
| TEST(Problem, CostFunctionsAreDeletedEvenWithRemovals) { |
| double y[4], z[5], w[4]; |
| int num_destructions = 0; |
| { |
| Problem problem; |
| problem.AddParameterBlock(y, 4); |
| problem.AddParameterBlock(z, 5); |
| |
| CostFunction* cost_yz = |
| new DestructorCountingCostFunction(&num_destructions); |
| CostFunction* cost_wz = |
| new DestructorCountingCostFunction(&num_destructions); |
| ResidualBlock* r_yz = problem.AddResidualBlock(cost_yz, NULL, y, z); |
| ResidualBlock* r_wz = problem.AddResidualBlock(cost_wz, NULL, w, z); |
| EXPECT_EQ(2, problem.NumResidualBlocks()); |
| |
| problem.RemoveResidualBlock(r_yz); |
| CHECK_EQ(num_destructions, 1); |
| problem.RemoveResidualBlock(r_wz); |
| CHECK_EQ(num_destructions, 2); |
| |
| EXPECT_EQ(0, problem.NumResidualBlocks()); |
| } |
| CHECK_EQ(num_destructions, 2); |
| } |
| |
| // Make the dynamic problem tests (e.g. for removing residual blocks) |
| // parameterized on whether the low-latency mode is enabled or not. |
| // |
| // This tests against ProblemImpl instead of Problem in order to inspect the |
| // state of the resulting Program; this is difficult with only the thin Problem |
| // interface. |
| struct DynamicProblem : public ::testing::TestWithParam<bool> { |
| DynamicProblem() { |
| Problem::Options options; |
| options.enable_fast_removal = GetParam(); |
| problem.reset(new ProblemImpl(options)); |
| } |
| |
| ParameterBlock* GetParameterBlock(int block) { |
| return problem->program().parameter_blocks()[block]; |
| } |
| ResidualBlock* GetResidualBlock(int block) { |
| return problem->program().residual_blocks()[block]; |
| } |
| |
| bool HasResidualBlock(ResidualBlock* residual_block) { |
| bool have_residual_block = true; |
| if (GetParam()) { |
| have_residual_block &= |
| (problem->residual_block_set().find(residual_block) != |
| problem->residual_block_set().end()); |
| } |
| have_residual_block &= |
| find(problem->program().residual_blocks().begin(), |
| problem->program().residual_blocks().end(), |
| residual_block) != problem->program().residual_blocks().end(); |
| return have_residual_block; |
| } |
| |
| int NumResidualBlocks() { |
| // Verify that the hash set of residuals is maintained consistently. |
| if (GetParam()) { |
| EXPECT_EQ(problem->residual_block_set().size(), |
| problem->NumResidualBlocks()); |
| } |
| return problem->NumResidualBlocks(); |
| } |
| |
| // The next block of functions until the end are only for testing the |
| // residual block removals. |
| void ExpectParameterBlockContainsResidualBlock( |
| double* values, ResidualBlock* residual_block) { |
| ParameterBlock* parameter_block = |
| FindOrDie(problem->parameter_map(), values); |
| EXPECT_TRUE(ContainsKey(*(parameter_block->mutable_residual_blocks()), |
| residual_block)); |
| } |
| |
| void ExpectSize(double* values, int size) { |
| ParameterBlock* parameter_block = |
| FindOrDie(problem->parameter_map(), values); |
| EXPECT_EQ(size, parameter_block->mutable_residual_blocks()->size()); |
| } |
| |
| // Degenerate case. |
| void ExpectParameterBlockContains(double* values) { ExpectSize(values, 0); } |
| |
| void ExpectParameterBlockContains(double* values, ResidualBlock* r1) { |
| ExpectSize(values, 1); |
| ExpectParameterBlockContainsResidualBlock(values, r1); |
| } |
| |
| void ExpectParameterBlockContains(double* values, |
| ResidualBlock* r1, |
| ResidualBlock* r2) { |
| ExpectSize(values, 2); |
| ExpectParameterBlockContainsResidualBlock(values, r1); |
| ExpectParameterBlockContainsResidualBlock(values, r2); |
| } |
| |
| void ExpectParameterBlockContains(double* values, |
| ResidualBlock* r1, |
| ResidualBlock* r2, |
| ResidualBlock* r3) { |
| ExpectSize(values, 3); |
| ExpectParameterBlockContainsResidualBlock(values, r1); |
| ExpectParameterBlockContainsResidualBlock(values, r2); |
| ExpectParameterBlockContainsResidualBlock(values, r3); |
| } |
| |
| void ExpectParameterBlockContains(double* values, |
| ResidualBlock* r1, |
| ResidualBlock* r2, |
| ResidualBlock* r3, |
| ResidualBlock* r4) { |
| ExpectSize(values, 4); |
| ExpectParameterBlockContainsResidualBlock(values, r1); |
| ExpectParameterBlockContainsResidualBlock(values, r2); |
| ExpectParameterBlockContainsResidualBlock(values, r3); |
| ExpectParameterBlockContainsResidualBlock(values, r4); |
| } |
| |
| std::unique_ptr<ProblemImpl> problem; |
| double y[4], z[5], w[3]; |
| }; |
| |
| TEST(Problem, SetParameterBlockConstantWithUnknownPtrDies) { |
| double x[3]; |
| double y[2]; |
| |
| Problem problem; |
| problem.AddParameterBlock(x, 3); |
| |
| EXPECT_DEATH_IF_SUPPORTED(problem.SetParameterBlockConstant(y), |
| "Parameter block not found:"); |
| } |
| |
| TEST(Problem, SetParameterBlockVariableWithUnknownPtrDies) { |
| double x[3]; |
| double y[2]; |
| |
| Problem problem; |
| problem.AddParameterBlock(x, 3); |
| |
| EXPECT_DEATH_IF_SUPPORTED(problem.SetParameterBlockVariable(y), |
| "Parameter block not found:"); |
| } |
| |
| TEST(Problem, IsParameterBlockConstant) { |
| double x1[3]; |
| double x2[3]; |
| |
| Problem problem; |
| problem.AddParameterBlock(x1, 3); |
| problem.AddParameterBlock(x2, 3); |
| |
| EXPECT_FALSE(problem.IsParameterBlockConstant(x1)); |
| EXPECT_FALSE(problem.IsParameterBlockConstant(x2)); |
| |
| problem.SetParameterBlockConstant(x1); |
| EXPECT_TRUE(problem.IsParameterBlockConstant(x1)); |
| EXPECT_FALSE(problem.IsParameterBlockConstant(x2)); |
| |
| problem.SetParameterBlockConstant(x2); |
| EXPECT_TRUE(problem.IsParameterBlockConstant(x1)); |
| EXPECT_TRUE(problem.IsParameterBlockConstant(x2)); |
| |
| problem.SetParameterBlockVariable(x1); |
| EXPECT_FALSE(problem.IsParameterBlockConstant(x1)); |
| EXPECT_TRUE(problem.IsParameterBlockConstant(x2)); |
| } |
| |
| TEST(Problem, IsParameterBlockConstantWithUnknownPtrDies) { |
| double x[3]; |
| double y[2]; |
| |
| Problem problem; |
| problem.AddParameterBlock(x, 3); |
| |
| EXPECT_DEATH_IF_SUPPORTED(problem.IsParameterBlockConstant(y), |
| "Parameter block not found:"); |
| } |
| |
| TEST(Problem, SetLocalParameterizationWithUnknownPtrDies) { |
| double x[3]; |
| double y[2]; |
| |
| Problem problem; |
| problem.AddParameterBlock(x, 3); |
| |
| EXPECT_DEATH_IF_SUPPORTED( |
| problem.SetParameterization(y, new IdentityParameterization(3)), |
| "Parameter block not found:"); |
| } |
| |
| TEST(Problem, RemoveParameterBlockWithUnknownPtrDies) { |
| double x[3]; |
| double y[2]; |
| |
| Problem problem; |
| problem.AddParameterBlock(x, 3); |
| |
| EXPECT_DEATH_IF_SUPPORTED(problem.RemoveParameterBlock(y), |
| "Parameter block not found:"); |
| } |
| |
| TEST(Problem, GetParameterization) { |
| double x[3]; |
| double y[2]; |
| |
| Problem problem; |
| problem.AddParameterBlock(x, 3); |
| problem.AddParameterBlock(y, 2); |
| |
| LocalParameterization* parameterization = new IdentityParameterization(3); |
| problem.SetParameterization(x, parameterization); |
| EXPECT_EQ(problem.GetParameterization(x), parameterization); |
| EXPECT_TRUE(problem.GetParameterization(y) == NULL); |
| } |
| |
| TEST(Problem, ParameterBlockQueryTest) { |
| double x[3]; |
| double y[4]; |
| Problem problem; |
| problem.AddParameterBlock(x, 3); |
| problem.AddParameterBlock(y, 4); |
| |
| vector<int> constant_parameters; |
| constant_parameters.push_back(0); |
| problem.SetParameterization( |
| x, new SubsetParameterization(3, constant_parameters)); |
| EXPECT_EQ(problem.ParameterBlockSize(x), 3); |
| EXPECT_EQ(problem.ParameterBlockLocalSize(x), 2); |
| EXPECT_EQ(problem.ParameterBlockLocalSize(y), 4); |
| |
| vector<double*> parameter_blocks; |
| problem.GetParameterBlocks(¶meter_blocks); |
| EXPECT_EQ(parameter_blocks.size(), 2); |
| EXPECT_NE(parameter_blocks[0], parameter_blocks[1]); |
| EXPECT_TRUE(parameter_blocks[0] == x || parameter_blocks[0] == y); |
| EXPECT_TRUE(parameter_blocks[1] == x || parameter_blocks[1] == y); |
| |
| EXPECT_TRUE(problem.HasParameterBlock(x)); |
| problem.RemoveParameterBlock(x); |
| EXPECT_FALSE(problem.HasParameterBlock(x)); |
| problem.GetParameterBlocks(¶meter_blocks); |
| EXPECT_EQ(parameter_blocks.size(), 1); |
| EXPECT_TRUE(parameter_blocks[0] == y); |
| } |
| |
| TEST_P(DynamicProblem, RemoveParameterBlockWithNoResiduals) { |
| problem->AddParameterBlock(y, 4); |
| problem->AddParameterBlock(z, 5); |
| problem->AddParameterBlock(w, 3); |
| ASSERT_EQ(3, problem->NumParameterBlocks()); |
| ASSERT_EQ(0, NumResidualBlocks()); |
| EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| EXPECT_EQ(z, GetParameterBlock(1)->user_state()); |
| EXPECT_EQ(w, GetParameterBlock(2)->user_state()); |
| |
| // w is at the end, which might break the swapping logic so try adding and |
| // removing it. |
| problem->RemoveParameterBlock(w); |
| ASSERT_EQ(2, problem->NumParameterBlocks()); |
| ASSERT_EQ(0, NumResidualBlocks()); |
| EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| EXPECT_EQ(z, GetParameterBlock(1)->user_state()); |
| problem->AddParameterBlock(w, 3); |
| ASSERT_EQ(3, problem->NumParameterBlocks()); |
| ASSERT_EQ(0, NumResidualBlocks()); |
| EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| EXPECT_EQ(z, GetParameterBlock(1)->user_state()); |
| EXPECT_EQ(w, GetParameterBlock(2)->user_state()); |
| |
| // Now remove z, which is in the middle, and add it back. |
| problem->RemoveParameterBlock(z); |
| ASSERT_EQ(2, problem->NumParameterBlocks()); |
| ASSERT_EQ(0, NumResidualBlocks()); |
| EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| EXPECT_EQ(w, GetParameterBlock(1)->user_state()); |
| problem->AddParameterBlock(z, 5); |
| ASSERT_EQ(3, problem->NumParameterBlocks()); |
| ASSERT_EQ(0, NumResidualBlocks()); |
| EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| EXPECT_EQ(w, GetParameterBlock(1)->user_state()); |
| EXPECT_EQ(z, GetParameterBlock(2)->user_state()); |
| |
| // Now remove everything. |
| // y |
| problem->RemoveParameterBlock(y); |
| ASSERT_EQ(2, problem->NumParameterBlocks()); |
| ASSERT_EQ(0, NumResidualBlocks()); |
| EXPECT_EQ(z, GetParameterBlock(0)->user_state()); |
| EXPECT_EQ(w, GetParameterBlock(1)->user_state()); |
| |
| // z |
| problem->RemoveParameterBlock(z); |
| ASSERT_EQ(1, problem->NumParameterBlocks()); |
| ASSERT_EQ(0, NumResidualBlocks()); |
| EXPECT_EQ(w, GetParameterBlock(0)->user_state()); |
| |
| // w |
| problem->RemoveParameterBlock(w); |
| EXPECT_EQ(0, problem->NumParameterBlocks()); |
| EXPECT_EQ(0, NumResidualBlocks()); |
| } |
| |
| TEST_P(DynamicProblem, RemoveParameterBlockWithResiduals) { |
| problem->AddParameterBlock(y, 4); |
| problem->AddParameterBlock(z, 5); |
| problem->AddParameterBlock(w, 3); |
| ASSERT_EQ(3, problem->NumParameterBlocks()); |
| ASSERT_EQ(0, NumResidualBlocks()); |
| EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| EXPECT_EQ(z, GetParameterBlock(1)->user_state()); |
| EXPECT_EQ(w, GetParameterBlock(2)->user_state()); |
| |
| // clang-format off |
| |
| // Add all combinations of cost functions. |
| CostFunction* cost_yzw = new TernaryCostFunction(1, 4, 5, 3); |
| CostFunction* cost_yz = new BinaryCostFunction (1, 4, 5); |
| CostFunction* cost_yw = new BinaryCostFunction (1, 4, 3); |
| CostFunction* cost_zw = new BinaryCostFunction (1, 5, 3); |
| CostFunction* cost_y = new UnaryCostFunction (1, 4); |
| CostFunction* cost_z = new UnaryCostFunction (1, 5); |
| CostFunction* cost_w = new UnaryCostFunction (1, 3); |
| |
| ResidualBlock* r_yzw = problem->AddResidualBlock(cost_yzw, NULL, y, z, w); |
| ResidualBlock* r_yz = problem->AddResidualBlock(cost_yz, NULL, y, z); |
| ResidualBlock* r_yw = problem->AddResidualBlock(cost_yw, NULL, y, w); |
| ResidualBlock* r_zw = problem->AddResidualBlock(cost_zw, NULL, z, w); |
| ResidualBlock* r_y = problem->AddResidualBlock(cost_y, NULL, y); |
| ResidualBlock* r_z = problem->AddResidualBlock(cost_z, NULL, z); |
| ResidualBlock* r_w = problem->AddResidualBlock(cost_w, NULL, w); |
| |
| EXPECT_EQ(3, problem->NumParameterBlocks()); |
| EXPECT_EQ(7, NumResidualBlocks()); |
| |
| // Remove w, which should remove r_yzw, r_yw, r_zw, r_w. |
| problem->RemoveParameterBlock(w); |
| ASSERT_EQ(2, problem->NumParameterBlocks()); |
| ASSERT_EQ(3, NumResidualBlocks()); |
| |
| ASSERT_FALSE(HasResidualBlock(r_yzw)); |
| ASSERT_TRUE (HasResidualBlock(r_yz )); |
| ASSERT_FALSE(HasResidualBlock(r_yw )); |
| ASSERT_FALSE(HasResidualBlock(r_zw )); |
| ASSERT_TRUE (HasResidualBlock(r_y )); |
| ASSERT_TRUE (HasResidualBlock(r_z )); |
| ASSERT_FALSE(HasResidualBlock(r_w )); |
| |
| // Remove z, which will remove almost everything else. |
| problem->RemoveParameterBlock(z); |
| ASSERT_EQ(1, problem->NumParameterBlocks()); |
| ASSERT_EQ(1, NumResidualBlocks()); |
| |
| ASSERT_FALSE(HasResidualBlock(r_yzw)); |
| ASSERT_FALSE(HasResidualBlock(r_yz )); |
| ASSERT_FALSE(HasResidualBlock(r_yw )); |
| ASSERT_FALSE(HasResidualBlock(r_zw )); |
| ASSERT_TRUE (HasResidualBlock(r_y )); |
| ASSERT_FALSE(HasResidualBlock(r_z )); |
| ASSERT_FALSE(HasResidualBlock(r_w )); |
| |
| // Remove y; all gone. |
| problem->RemoveParameterBlock(y); |
| EXPECT_EQ(0, problem->NumParameterBlocks()); |
| EXPECT_EQ(0, NumResidualBlocks()); |
| |
| // clang-format on |
| } |
| |
| TEST_P(DynamicProblem, RemoveResidualBlock) { |
| problem->AddParameterBlock(y, 4); |
| problem->AddParameterBlock(z, 5); |
| problem->AddParameterBlock(w, 3); |
| |
| // clang-format off |
| |
| // Add all combinations of cost functions. |
| CostFunction* cost_yzw = new TernaryCostFunction(1, 4, 5, 3); |
| CostFunction* cost_yz = new BinaryCostFunction (1, 4, 5); |
| CostFunction* cost_yw = new BinaryCostFunction (1, 4, 3); |
| CostFunction* cost_zw = new BinaryCostFunction (1, 5, 3); |
| CostFunction* cost_y = new UnaryCostFunction (1, 4); |
| CostFunction* cost_z = new UnaryCostFunction (1, 5); |
| CostFunction* cost_w = new UnaryCostFunction (1, 3); |
| |
| ResidualBlock* r_yzw = problem->AddResidualBlock(cost_yzw, NULL, y, z, w); |
| ResidualBlock* r_yz = problem->AddResidualBlock(cost_yz, NULL, y, z); |
| ResidualBlock* r_yw = problem->AddResidualBlock(cost_yw, NULL, y, w); |
| ResidualBlock* r_zw = problem->AddResidualBlock(cost_zw, NULL, z, w); |
| ResidualBlock* r_y = problem->AddResidualBlock(cost_y, NULL, y); |
| ResidualBlock* r_z = problem->AddResidualBlock(cost_z, NULL, z); |
| ResidualBlock* r_w = problem->AddResidualBlock(cost_w, NULL, w); |
| |
| if (GetParam()) { |
| // In this test parameterization, there should be back-pointers from the |
| // parameter blocks to the residual blocks. |
| ExpectParameterBlockContains(y, r_yzw, r_yz, r_yw, r_y); |
| ExpectParameterBlockContains(z, r_yzw, r_yz, r_zw, r_z); |
| ExpectParameterBlockContains(w, r_yzw, r_yw, r_zw, r_w); |
| } else { |
| // Otherwise, nothing. |
| EXPECT_TRUE(GetParameterBlock(0)->mutable_residual_blocks() == NULL); |
| EXPECT_TRUE(GetParameterBlock(1)->mutable_residual_blocks() == NULL); |
| EXPECT_TRUE(GetParameterBlock(2)->mutable_residual_blocks() == NULL); |
| } |
| EXPECT_EQ(3, problem->NumParameterBlocks()); |
| EXPECT_EQ(7, NumResidualBlocks()); |
| |
| // Remove each residual and check the state after each removal. |
| |
| // Remove r_yzw. |
| problem->RemoveResidualBlock(r_yzw); |
| ASSERT_EQ(3, problem->NumParameterBlocks()); |
| ASSERT_EQ(6, NumResidualBlocks()); |
| if (GetParam()) { |
| ExpectParameterBlockContains(y, r_yz, r_yw, r_y); |
| ExpectParameterBlockContains(z, r_yz, r_zw, r_z); |
| ExpectParameterBlockContains(w, r_yw, r_zw, r_w); |
| } |
| ASSERT_TRUE (HasResidualBlock(r_yz )); |
| ASSERT_TRUE (HasResidualBlock(r_yw )); |
| ASSERT_TRUE (HasResidualBlock(r_zw )); |
| ASSERT_TRUE (HasResidualBlock(r_y )); |
| ASSERT_TRUE (HasResidualBlock(r_z )); |
| ASSERT_TRUE (HasResidualBlock(r_w )); |
| |
| // Remove r_yw. |
| problem->RemoveResidualBlock(r_yw); |
| ASSERT_EQ(3, problem->NumParameterBlocks()); |
| ASSERT_EQ(5, NumResidualBlocks()); |
| if (GetParam()) { |
| ExpectParameterBlockContains(y, r_yz, r_y); |
| ExpectParameterBlockContains(z, r_yz, r_zw, r_z); |
| ExpectParameterBlockContains(w, r_zw, r_w); |
| } |
| ASSERT_TRUE (HasResidualBlock(r_yz )); |
| ASSERT_TRUE (HasResidualBlock(r_zw )); |
| ASSERT_TRUE (HasResidualBlock(r_y )); |
| ASSERT_TRUE (HasResidualBlock(r_z )); |
| ASSERT_TRUE (HasResidualBlock(r_w )); |
| |
| // Remove r_zw. |
| problem->RemoveResidualBlock(r_zw); |
| ASSERT_EQ(3, problem->NumParameterBlocks()); |
| ASSERT_EQ(4, NumResidualBlocks()); |
| if (GetParam()) { |
| ExpectParameterBlockContains(y, r_yz, r_y); |
| ExpectParameterBlockContains(z, r_yz, r_z); |
| ExpectParameterBlockContains(w, r_w); |
| } |
| ASSERT_TRUE (HasResidualBlock(r_yz )); |
| ASSERT_TRUE (HasResidualBlock(r_y )); |
| ASSERT_TRUE (HasResidualBlock(r_z )); |
| ASSERT_TRUE (HasResidualBlock(r_w )); |
| |
| // Remove r_w. |
| problem->RemoveResidualBlock(r_w); |
| ASSERT_EQ(3, problem->NumParameterBlocks()); |
| ASSERT_EQ(3, NumResidualBlocks()); |
| if (GetParam()) { |
| ExpectParameterBlockContains(y, r_yz, r_y); |
| ExpectParameterBlockContains(z, r_yz, r_z); |
| ExpectParameterBlockContains(w); |
| } |
| ASSERT_TRUE (HasResidualBlock(r_yz )); |
| ASSERT_TRUE (HasResidualBlock(r_y )); |
| ASSERT_TRUE (HasResidualBlock(r_z )); |
| |
| // Remove r_yz. |
| problem->RemoveResidualBlock(r_yz); |
| ASSERT_EQ(3, problem->NumParameterBlocks()); |
| ASSERT_EQ(2, NumResidualBlocks()); |
| if (GetParam()) { |
| ExpectParameterBlockContains(y, r_y); |
| ExpectParameterBlockContains(z, r_z); |
| ExpectParameterBlockContains(w); |
| } |
| ASSERT_TRUE (HasResidualBlock(r_y )); |
| ASSERT_TRUE (HasResidualBlock(r_z )); |
| |
| // Remove the last two. |
| problem->RemoveResidualBlock(r_z); |
| problem->RemoveResidualBlock(r_y); |
| ASSERT_EQ(3, problem->NumParameterBlocks()); |
| ASSERT_EQ(0, NumResidualBlocks()); |
| if (GetParam()) { |
| ExpectParameterBlockContains(y); |
| ExpectParameterBlockContains(z); |
| ExpectParameterBlockContains(w); |
| } |
| |
| // clang-format on |
| } |
| |
| TEST_P(DynamicProblem, RemoveInvalidResidualBlockDies) { |
| problem->AddParameterBlock(y, 4); |
| problem->AddParameterBlock(z, 5); |
| problem->AddParameterBlock(w, 3); |
| |
| // clang-format off |
| |
| // Add all combinations of cost functions. |
| CostFunction* cost_yzw = new TernaryCostFunction(1, 4, 5, 3); |
| CostFunction* cost_yz = new BinaryCostFunction (1, 4, 5); |
| CostFunction* cost_yw = new BinaryCostFunction (1, 4, 3); |
| CostFunction* cost_zw = new BinaryCostFunction (1, 5, 3); |
| CostFunction* cost_y = new UnaryCostFunction (1, 4); |
| CostFunction* cost_z = new UnaryCostFunction (1, 5); |
| CostFunction* cost_w = new UnaryCostFunction (1, 3); |
| |
| ResidualBlock* r_yzw = problem->AddResidualBlock(cost_yzw, NULL, y, z, w); |
| ResidualBlock* r_yz = problem->AddResidualBlock(cost_yz, NULL, y, z); |
| ResidualBlock* r_yw = problem->AddResidualBlock(cost_yw, NULL, y, w); |
| ResidualBlock* r_zw = problem->AddResidualBlock(cost_zw, NULL, z, w); |
| ResidualBlock* r_y = problem->AddResidualBlock(cost_y, NULL, y); |
| ResidualBlock* r_z = problem->AddResidualBlock(cost_z, NULL, z); |
| ResidualBlock* r_w = problem->AddResidualBlock(cost_w, NULL, w); |
| |
| // clang-format on |
| |
| // Remove r_yzw. |
| problem->RemoveResidualBlock(r_yzw); |
| ASSERT_EQ(3, problem->NumParameterBlocks()); |
| ASSERT_EQ(6, NumResidualBlocks()); |
| // Attempt to remove r_yzw again. |
| EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(r_yzw), "not found"); |
| |
| // Attempt to remove a cast pointer never added as a residual. |
| int trash_memory = 1234; |
| ResidualBlock* invalid_residual = |
| reinterpret_cast<ResidualBlock*>(&trash_memory); |
| EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(invalid_residual), |
| "not found"); |
| |
| // Remove a parameter block, which in turn removes the dependent residuals |
| // then attempt to remove them directly. |
| problem->RemoveParameterBlock(z); |
| ASSERT_EQ(2, problem->NumParameterBlocks()); |
| ASSERT_EQ(3, NumResidualBlocks()); |
| EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(r_yz), "not found"); |
| EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(r_zw), "not found"); |
| EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(r_z), "not found"); |
| |
| problem->RemoveResidualBlock(r_yw); |
| problem->RemoveResidualBlock(r_w); |
| problem->RemoveResidualBlock(r_y); |
| } |
| |
| // Check that a null-terminated array, a, has the same elements as b. |
| template <typename T> |
| void ExpectVectorContainsUnordered(const T* a, const vector<T>& b) { |
| // Compute the size of a. |
| int size = 0; |
| while (a[size]) { |
| ++size; |
| } |
| ASSERT_EQ(size, b.size()); |
| |
| // Sort a. |
| vector<T> a_sorted(size); |
| copy(a, a + size, a_sorted.begin()); |
| sort(a_sorted.begin(), a_sorted.end()); |
| |
| // Sort b. |
| vector<T> b_sorted(b); |
| sort(b_sorted.begin(), b_sorted.end()); |
| |
| // Compare. |
| for (int i = 0; i < size; ++i) { |
| EXPECT_EQ(a_sorted[i], b_sorted[i]); |
| } |
| } |
| |
| static void ExpectProblemHasResidualBlocks( |
| const ProblemImpl& problem, |
| const ResidualBlockId* expected_residual_blocks) { |
| vector<ResidualBlockId> residual_blocks; |
| problem.GetResidualBlocks(&residual_blocks); |
| ExpectVectorContainsUnordered(expected_residual_blocks, residual_blocks); |
| } |
| |
| TEST_P(DynamicProblem, GetXXXBlocksForYYYBlock) { |
| problem->AddParameterBlock(y, 4); |
| problem->AddParameterBlock(z, 5); |
| problem->AddParameterBlock(w, 3); |
| |
| // clang-format off |
| |
| // Add all combinations of cost functions. |
| CostFunction* cost_yzw = new TernaryCostFunction(1, 4, 5, 3); |
| CostFunction* cost_yz = new BinaryCostFunction (1, 4, 5); |
| CostFunction* cost_yw = new BinaryCostFunction (1, 4, 3); |
| CostFunction* cost_zw = new BinaryCostFunction (1, 5, 3); |
| CostFunction* cost_y = new UnaryCostFunction (1, 4); |
| CostFunction* cost_z = new UnaryCostFunction (1, 5); |
| CostFunction* cost_w = new UnaryCostFunction (1, 3); |
| |
| ResidualBlock* r_yzw = problem->AddResidualBlock(cost_yzw, NULL, y, z, w); |
| { |
| ResidualBlockId expected_residuals[] = {r_yzw, 0}; |
| ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| } |
| ResidualBlock* r_yz = problem->AddResidualBlock(cost_yz, NULL, y, z); |
| { |
| ResidualBlockId expected_residuals[] = {r_yzw, r_yz, 0}; |
| ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| } |
| ResidualBlock* r_yw = problem->AddResidualBlock(cost_yw, NULL, y, w); |
| { |
| ResidualBlock *expected_residuals[] = {r_yzw, r_yz, r_yw, 0}; |
| ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| } |
| ResidualBlock* r_zw = problem->AddResidualBlock(cost_zw, NULL, z, w); |
| { |
| ResidualBlock *expected_residuals[] = {r_yzw, r_yz, r_yw, r_zw, 0}; |
| ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| } |
| ResidualBlock* r_y = problem->AddResidualBlock(cost_y, NULL, y); |
| { |
| ResidualBlock *expected_residuals[] = {r_yzw, r_yz, r_yw, r_zw, r_y, 0}; |
| ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| } |
| ResidualBlock* r_z = problem->AddResidualBlock(cost_z, NULL, z); |
| { |
| ResidualBlock *expected_residuals[] = { |
| r_yzw, r_yz, r_yw, r_zw, r_y, r_z, 0 |
| }; |
| ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| } |
| ResidualBlock* r_w = problem->AddResidualBlock(cost_w, NULL, w); |
| { |
| ResidualBlock *expected_residuals[] = { |
| r_yzw, r_yz, r_yw, r_zw, r_y, r_z, r_w, 0 |
| }; |
| ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| } |
| |
| vector<double*> parameter_blocks; |
| vector<ResidualBlockId> residual_blocks; |
| |
| // Check GetResidualBlocksForParameterBlock() for all parameter blocks. |
| struct GetResidualBlocksForParameterBlockTestCase { |
| double* parameter_block; |
| ResidualBlockId expected_residual_blocks[10]; |
| }; |
| GetResidualBlocksForParameterBlockTestCase get_residual_blocks_cases[] = { |
| { y, { r_yzw, r_yz, r_yw, r_y, NULL} }, |
| { z, { r_yzw, r_yz, r_zw, r_z, NULL} }, |
| { w, { r_yzw, r_yw, r_zw, r_w, NULL} }, |
| { NULL } |
| }; |
| for (int i = 0; get_residual_blocks_cases[i].parameter_block; ++i) { |
| problem->GetResidualBlocksForParameterBlock( |
| get_residual_blocks_cases[i].parameter_block, |
| &residual_blocks); |
| ExpectVectorContainsUnordered( |
| get_residual_blocks_cases[i].expected_residual_blocks, |
| residual_blocks); |
| } |
| |
| // Check GetParameterBlocksForResidualBlock() for all residual blocks. |
| struct GetParameterBlocksForResidualBlockTestCase { |
| ResidualBlockId residual_block; |
| double* expected_parameter_blocks[10]; |
| }; |
| GetParameterBlocksForResidualBlockTestCase get_parameter_blocks_cases[] = { |
| { r_yzw, { y, z, w, NULL } }, |
| { r_yz , { y, z, NULL } }, |
| { r_yw , { y, w, NULL } }, |
| { r_zw , { z, w, NULL } }, |
| { r_y , { y, NULL } }, |
| { r_z , { z, NULL } }, |
| { r_w , { w, NULL } }, |
| { NULL } |
| }; |
| for (int i = 0; get_parameter_blocks_cases[i].residual_block; ++i) { |
| problem->GetParameterBlocksForResidualBlock( |
| get_parameter_blocks_cases[i].residual_block, |
| ¶meter_blocks); |
| ExpectVectorContainsUnordered( |
| get_parameter_blocks_cases[i].expected_parameter_blocks, |
| parameter_blocks); |
| } |
| |
| // clang-format on |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(OptionsInstantiation, |
| DynamicProblem, |
| ::testing::Values(true, false)); |
| |
| // Test for Problem::Evaluate |
| |
| // r_i = i - (j + 1) * x_ij^2 |
| template <int kNumResiduals, int kNumParameterBlocks> |
| class QuadraticCostFunction : public CostFunction { |
| public: |
| QuadraticCostFunction() { |
| CHECK_GT(kNumResiduals, 0); |
| CHECK_GT(kNumParameterBlocks, 0); |
| set_num_residuals(kNumResiduals); |
| for (int i = 0; i < kNumParameterBlocks; ++i) { |
| mutable_parameter_block_sizes()->push_back(kNumResiduals); |
| } |
| } |
| |
| bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const final { |
| for (int i = 0; i < kNumResiduals; ++i) { |
| residuals[i] = i; |
| for (int j = 0; j < kNumParameterBlocks; ++j) { |
| residuals[i] -= (j + 1.0) * parameters[j][i] * parameters[j][i]; |
| } |
| } |
| |
| if (jacobians == NULL) { |
| return true; |
| } |
| |
| for (int j = 0; j < kNumParameterBlocks; ++j) { |
| if (jacobians[j] != NULL) { |
| MatrixRef(jacobians[j], kNumResiduals, kNumResiduals) = |
| (-2.0 * (j + 1.0) * ConstVectorRef(parameters[j], kNumResiduals)) |
| .asDiagonal(); |
| } |
| } |
| |
| return true; |
| } |
| }; |
| |
| // Convert a CRSMatrix to a dense Eigen matrix. |
| static void CRSToDenseMatrix(const CRSMatrix& input, Matrix* output) { |
| CHECK(output != nullptr); |
| Matrix& m = *output; |
| m.resize(input.num_rows, input.num_cols); |
| m.setZero(); |
| for (int row = 0; row < input.num_rows; ++row) { |
| for (int j = input.rows[row]; j < input.rows[row + 1]; ++j) { |
| const int col = input.cols[j]; |
| m(row, col) = input.values[j]; |
| } |
| } |
| } |
| |
| class ProblemEvaluateTest : public ::testing::Test { |
| protected: |
| void SetUp() { |
| for (int i = 0; i < 6; ++i) { |
| parameters_[i] = static_cast<double>(i + 1); |
| } |
| |
| parameter_blocks_.push_back(parameters_); |
| parameter_blocks_.push_back(parameters_ + 2); |
| parameter_blocks_.push_back(parameters_ + 4); |
| |
| CostFunction* cost_function = new QuadraticCostFunction<2, 2>; |
| |
| // f(x, y) |
| residual_blocks_.push_back(problem_.AddResidualBlock( |
| cost_function, NULL, parameters_, parameters_ + 2)); |
| // g(y, z) |
| residual_blocks_.push_back(problem_.AddResidualBlock( |
| cost_function, NULL, parameters_ + 2, parameters_ + 4)); |
| // h(z, x) |
| residual_blocks_.push_back(problem_.AddResidualBlock( |
| cost_function, NULL, parameters_ + 4, parameters_)); |
| } |
| |
| void TearDown() { EXPECT_TRUE(problem_.program().IsValid()); } |
| |
| void EvaluateAndCompare(const Problem::EvaluateOptions& options, |
| const int expected_num_rows, |
| const int expected_num_cols, |
| const double expected_cost, |
| const double* expected_residuals, |
| const double* expected_gradient, |
| const double* expected_jacobian) { |
| double cost; |
| vector<double> residuals; |
| vector<double> gradient; |
| CRSMatrix jacobian; |
| |
| EXPECT_TRUE( |
| problem_.Evaluate(options, |
| &cost, |
| expected_residuals != NULL ? &residuals : NULL, |
| expected_gradient != NULL ? &gradient : NULL, |
| expected_jacobian != NULL ? &jacobian : NULL)); |
| |
| if (expected_residuals != NULL) { |
| EXPECT_EQ(residuals.size(), expected_num_rows); |
| } |
| |
| if (expected_gradient != NULL) { |
| EXPECT_EQ(gradient.size(), expected_num_cols); |
| } |
| |
| if (expected_jacobian != NULL) { |
| EXPECT_EQ(jacobian.num_rows, expected_num_rows); |
| EXPECT_EQ(jacobian.num_cols, expected_num_cols); |
| } |
| |
| Matrix dense_jacobian; |
| if (expected_jacobian != NULL) { |
| CRSToDenseMatrix(jacobian, &dense_jacobian); |
| } |
| |
| CompareEvaluations(expected_num_rows, |
| expected_num_cols, |
| expected_cost, |
| expected_residuals, |
| expected_gradient, |
| expected_jacobian, |
| cost, |
| residuals.size() > 0 ? &residuals[0] : NULL, |
| gradient.size() > 0 ? &gradient[0] : NULL, |
| dense_jacobian.data()); |
| } |
| |
| void CheckAllEvaluationCombinations(const Problem::EvaluateOptions& options, |
| const ExpectedEvaluation& expected) { |
| for (int i = 0; i < 8; ++i) { |
| EvaluateAndCompare(options, |
| expected.num_rows, |
| expected.num_cols, |
| expected.cost, |
| (i & 1) ? expected.residuals : NULL, |
| (i & 2) ? expected.gradient : NULL, |
| (i & 4) ? expected.jacobian : NULL); |
| } |
| } |
| |
| ProblemImpl problem_; |
| double parameters_[6]; |
| vector<double*> parameter_blocks_; |
| vector<ResidualBlockId> residual_blocks_; |
| }; |
| |
| TEST_F(ProblemEvaluateTest, MultipleParameterAndResidualBlocks) { |
| // clang-format off |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 6, 6, |
| // Cost |
| 7607.0, |
| // Residuals |
| { -19.0, -35.0, // f |
| -59.0, -87.0, // g |
| -27.0, -43.0 // h |
| }, |
| // Gradient |
| { 146.0, 484.0, // x |
| 582.0, 1256.0, // y |
| 1450.0, 2604.0, // z |
| }, |
| // Jacobian |
| // x y z |
| { /* f(x, y) */ -2.0, 0.0, -12.0, 0.0, 0.0, 0.0, |
| 0.0, -4.0, 0.0, -16.0, 0.0, 0.0, |
| /* g(y, z) */ 0.0, 0.0, -6.0, 0.0, -20.0, 0.0, |
| 0.0, 0.0, 0.0, -8.0, 0.0, -24.0, |
| /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 0.0, -8.0, 0.0, 0.0, 0.0, -12.0 |
| } |
| }; |
| // clang-format on |
| |
| CheckAllEvaluationCombinations(Problem::EvaluateOptions(), expected); |
| } |
| |
| TEST_F(ProblemEvaluateTest, ParameterAndResidualBlocksPassedInOptions) { |
| // clang-format off |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 6, 6, |
| // Cost |
| 7607.0, |
| // Residuals |
| { -19.0, -35.0, // f |
| -59.0, -87.0, // g |
| -27.0, -43.0 // h |
| }, |
| // Gradient |
| { 146.0, 484.0, // x |
| 582.0, 1256.0, // y |
| 1450.0, 2604.0, // z |
| }, |
| // Jacobian |
| // x y z |
| { /* f(x, y) */ -2.0, 0.0, -12.0, 0.0, 0.0, 0.0, |
| 0.0, -4.0, 0.0, -16.0, 0.0, 0.0, |
| /* g(y, z) */ 0.0, 0.0, -6.0, 0.0, -20.0, 0.0, |
| 0.0, 0.0, 0.0, -8.0, 0.0, -24.0, |
| /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 0.0, -8.0, 0.0, 0.0, 0.0, -12.0 |
| } |
| }; |
| // clang-format on |
| |
| Problem::EvaluateOptions evaluate_options; |
| evaluate_options.parameter_blocks = parameter_blocks_; |
| evaluate_options.residual_blocks = residual_blocks_; |
| CheckAllEvaluationCombinations(evaluate_options, expected); |
| } |
| |
| TEST_F(ProblemEvaluateTest, ReorderedResidualBlocks) { |
| // clang-format off |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 6, 6, |
| // Cost |
| 7607.0, |
| // Residuals |
| { -19.0, -35.0, // f |
| -27.0, -43.0, // h |
| -59.0, -87.0 // g |
| }, |
| // Gradient |
| { 146.0, 484.0, // x |
| 582.0, 1256.0, // y |
| 1450.0, 2604.0, // z |
| }, |
| // Jacobian |
| // x y z |
| { /* f(x, y) */ -2.0, 0.0, -12.0, 0.0, 0.0, 0.0, |
| 0.0, -4.0, 0.0, -16.0, 0.0, 0.0, |
| /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 0.0, -8.0, 0.0, 0.0, 0.0, -12.0, |
| /* g(y, z) */ 0.0, 0.0, -6.0, 0.0, -20.0, 0.0, |
| 0.0, 0.0, 0.0, -8.0, 0.0, -24.0 |
| } |
| }; |
| // clang-format on |
| |
| Problem::EvaluateOptions evaluate_options; |
| evaluate_options.parameter_blocks = parameter_blocks_; |
| |
| // f, h, g |
| evaluate_options.residual_blocks.push_back(residual_blocks_[0]); |
| evaluate_options.residual_blocks.push_back(residual_blocks_[2]); |
| evaluate_options.residual_blocks.push_back(residual_blocks_[1]); |
| |
| CheckAllEvaluationCombinations(evaluate_options, expected); |
| } |
| |
| TEST_F(ProblemEvaluateTest, |
| ReorderedResidualBlocksAndReorderedParameterBlocks) { |
| // clang-format off |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 6, 6, |
| // Cost |
| 7607.0, |
| // Residuals |
| { -19.0, -35.0, // f |
| -27.0, -43.0, // h |
| -59.0, -87.0 // g |
| }, |
| // Gradient |
| { 1450.0, 2604.0, // z |
| 582.0, 1256.0, // y |
| 146.0, 484.0, // x |
| }, |
| // Jacobian |
| // z y x |
| { /* f(x, y) */ 0.0, 0.0, -12.0, 0.0, -2.0, 0.0, |
| 0.0, 0.0, 0.0, -16.0, 0.0, -4.0, |
| /* h(z, x) */ -10.0, 0.0, 0.0, 0.0, -4.0, 0.0, |
| 0.0, -12.0, 0.0, 0.0, 0.0, -8.0, |
| /* g(y, z) */ -20.0, 0.0, -6.0, 0.0, 0.0, 0.0, |
| 0.0, -24.0, 0.0, -8.0, 0.0, 0.0 |
| } |
| }; |
| // clang-format on |
| |
| Problem::EvaluateOptions evaluate_options; |
| // z, y, x |
| evaluate_options.parameter_blocks.push_back(parameter_blocks_[2]); |
| evaluate_options.parameter_blocks.push_back(parameter_blocks_[1]); |
| evaluate_options.parameter_blocks.push_back(parameter_blocks_[0]); |
| |
| // f, h, g |
| evaluate_options.residual_blocks.push_back(residual_blocks_[0]); |
| evaluate_options.residual_blocks.push_back(residual_blocks_[2]); |
| evaluate_options.residual_blocks.push_back(residual_blocks_[1]); |
| |
| CheckAllEvaluationCombinations(evaluate_options, expected); |
| } |
| |
| TEST_F(ProblemEvaluateTest, ConstantParameterBlock) { |
| // clang-format off |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 6, 6, |
| // Cost |
| 7607.0, |
| // Residuals |
| { -19.0, -35.0, // f |
| -59.0, -87.0, // g |
| -27.0, -43.0 // h |
| }, |
| |
| // Gradient |
| { 146.0, 484.0, // x |
| 0.0, 0.0, // y |
| 1450.0, 2604.0, // z |
| }, |
| |
| // Jacobian |
| // x y z |
| { /* f(x, y) */ -2.0, 0.0, 0.0, 0.0, 0.0, 0.0, |
| 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, |
| /* g(y, z) */ 0.0, 0.0, 0.0, 0.0, -20.0, 0.0, |
| 0.0, 0.0, 0.0, 0.0, 0.0, -24.0, |
| /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 0.0, -8.0, 0.0, 0.0, 0.0, -12.0 |
| } |
| }; |
| // clang-format on |
| |
| problem_.SetParameterBlockConstant(parameters_ + 2); |
| CheckAllEvaluationCombinations(Problem::EvaluateOptions(), expected); |
| } |
| |
| TEST_F(ProblemEvaluateTest, ExcludedAResidualBlock) { |
| // clang-format off |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 4, 6, |
| // Cost |
| 2082.0, |
| // Residuals |
| { -19.0, -35.0, // f |
| -27.0, -43.0 // h |
| }, |
| // Gradient |
| { 146.0, 484.0, // x |
| 228.0, 560.0, // y |
| 270.0, 516.0, // z |
| }, |
| // Jacobian |
| // x y z |
| { /* f(x, y) */ -2.0, 0.0, -12.0, 0.0, 0.0, 0.0, |
| 0.0, -4.0, 0.0, -16.0, 0.0, 0.0, |
| /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 0.0, -8.0, 0.0, 0.0, 0.0, -12.0 |
| } |
| }; |
| // clang-format on |
| |
| Problem::EvaluateOptions evaluate_options; |
| evaluate_options.residual_blocks.push_back(residual_blocks_[0]); |
| evaluate_options.residual_blocks.push_back(residual_blocks_[2]); |
| |
| CheckAllEvaluationCombinations(evaluate_options, expected); |
| } |
| |
| TEST_F(ProblemEvaluateTest, ExcludedParameterBlock) { |
| // clang-format off |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 6, 4, |
| // Cost |
| 7607.0, |
| // Residuals |
| { -19.0, -35.0, // f |
| -59.0, -87.0, // g |
| -27.0, -43.0 // h |
| }, |
| |
| // Gradient |
| { 146.0, 484.0, // x |
| 1450.0, 2604.0, // z |
| }, |
| |
| // Jacobian |
| // x z |
| { /* f(x, y) */ -2.0, 0.0, 0.0, 0.0, |
| 0.0, -4.0, 0.0, 0.0, |
| /* g(y, z) */ 0.0, 0.0, -20.0, 0.0, |
| 0.0, 0.0, 0.0, -24.0, |
| /* h(z, x) */ -4.0, 0.0, -10.0, 0.0, |
| 0.0, -8.0, 0.0, -12.0 |
| } |
| }; |
| // clang-format on |
| |
| Problem::EvaluateOptions evaluate_options; |
| // x, z |
| evaluate_options.parameter_blocks.push_back(parameter_blocks_[0]); |
| evaluate_options.parameter_blocks.push_back(parameter_blocks_[2]); |
| evaluate_options.residual_blocks = residual_blocks_; |
| CheckAllEvaluationCombinations(evaluate_options, expected); |
| } |
| |
| TEST_F(ProblemEvaluateTest, ExcludedParameterBlockAndExcludedResidualBlock) { |
| // clang-format off |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 4, 4, |
| // Cost |
| 6318.0, |
| // Residuals |
| { -19.0, -35.0, // f |
| -59.0, -87.0, // g |
| }, |
| |
| // Gradient |
| { 38.0, 140.0, // x |
| 1180.0, 2088.0, // z |
| }, |
| |
| // Jacobian |
| // x z |
| { /* f(x, y) */ -2.0, 0.0, 0.0, 0.0, |
| 0.0, -4.0, 0.0, 0.0, |
| /* g(y, z) */ 0.0, 0.0, -20.0, 0.0, |
| 0.0, 0.0, 0.0, -24.0, |
| } |
| }; |
| // clang-format on |
| |
| Problem::EvaluateOptions evaluate_options; |
| // x, z |
| evaluate_options.parameter_blocks.push_back(parameter_blocks_[0]); |
| evaluate_options.parameter_blocks.push_back(parameter_blocks_[2]); |
| evaluate_options.residual_blocks.push_back(residual_blocks_[0]); |
| evaluate_options.residual_blocks.push_back(residual_blocks_[1]); |
| |
| CheckAllEvaluationCombinations(evaluate_options, expected); |
| } |
| |
| TEST_F(ProblemEvaluateTest, LocalParameterization) { |
| // clang-format off |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 6, 5, |
| // Cost |
| 7607.0, |
| // Residuals |
| { -19.0, -35.0, // f |
| -59.0, -87.0, // g |
| -27.0, -43.0 // h |
| }, |
| // Gradient |
| { 146.0, 484.0, // x |
| 1256.0, // y with SubsetParameterization |
| 1450.0, 2604.0, // z |
| }, |
| // Jacobian |
| // x y z |
| { /* f(x, y) */ -2.0, 0.0, 0.0, 0.0, 0.0, |
| 0.0, -4.0, -16.0, 0.0, 0.0, |
| /* g(y, z) */ 0.0, 0.0, 0.0, -20.0, 0.0, |
| 0.0, 0.0, -8.0, 0.0, -24.0, |
| /* h(z, x) */ -4.0, 0.0, 0.0, -10.0, 0.0, |
| 0.0, -8.0, 0.0, 0.0, -12.0 |
| } |
| }; |
| // clang-format on |
| |
| vector<int> constant_parameters; |
| constant_parameters.push_back(0); |
| problem_.SetParameterization( |
| parameters_ + 2, new SubsetParameterization(2, constant_parameters)); |
| |
| CheckAllEvaluationCombinations(Problem::EvaluateOptions(), expected); |
| } |
| |
| struct IdentityFunctor { |
| template <typename T> |
| bool operator()(const T* x, const T* y, T* residuals) const { |
| residuals[0] = x[0]; |
| residuals[1] = x[1]; |
| residuals[2] = y[0]; |
| residuals[3] = y[1]; |
| residuals[4] = y[2]; |
| return true; |
| } |
| |
| static CostFunction* Create() { |
| return new AutoDiffCostFunction<IdentityFunctor, 5, 2, 3>( |
| new IdentityFunctor); |
| } |
| }; |
| |
| class ProblemEvaluateResidualBlockTest : public ::testing::Test { |
| public: |
| static constexpr bool kApplyLossFunction = true; |
| static constexpr bool kDoNotApplyLossFunction = false; |
| static constexpr bool kNewPoint = true; |
| static constexpr bool kNotNewPoint = false; |
| static double loss_function_scale_; |
| |
| protected: |
| ProblemImpl problem_; |
| double x_[2] = {1, 2}; |
| double y_[3] = {1, 2, 3}; |
| }; |
| |
| double ProblemEvaluateResidualBlockTest::loss_function_scale_ = 2.0; |
| |
| TEST_F(ProblemEvaluateResidualBlockTest, |
| OneResidualBlockNoLossFunctionFullEval) { |
| ResidualBlockId residual_block_id = |
| problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| Vector expected_f(5); |
| expected_f << 1, 2, 1, 2, 3; |
| Matrix expected_dfdx = Matrix::Zero(5, 2); |
| expected_dfdx.block(0, 0, 2, 2) = Matrix::Identity(2, 2); |
| Matrix expected_dfdy = Matrix::Zero(5, 3); |
| expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| double expected_cost = expected_f.squaredNorm() / 2.0; |
| |
| double actual_cost; |
| Vector actual_f(5); |
| Matrix actual_dfdx(5, 2); |
| Matrix actual_dfdy(5, 3); |
| double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| |
| EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_cost; |
| EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_f; |
| EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_dfdx; |
| EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_dfdy; |
| } |
| |
| TEST_F(ProblemEvaluateResidualBlockTest, |
| OneResidualBlockNoLossFunctionNullEval) { |
| ResidualBlockId residual_block_id = |
| problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| nullptr, |
| nullptr, |
| nullptr)); |
| } |
| |
| TEST_F(ProblemEvaluateResidualBlockTest, OneResidualBlockNoLossFunctionCost) { |
| ResidualBlockId residual_block_id = |
| problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| Vector expected_f(5); |
| expected_f << 1, 2, 1, 2, 3; |
| double expected_cost = expected_f.squaredNorm() / 2.0; |
| |
| double actual_cost; |
| EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| nullptr, |
| nullptr)); |
| |
| EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_cost; |
| } |
| |
| TEST_F(ProblemEvaluateResidualBlockTest, |
| OneResidualBlockNoLossFunctionCostAndResidual) { |
| ResidualBlockId residual_block_id = |
| problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| Vector expected_f(5); |
| expected_f << 1, 2, 1, 2, 3; |
| double expected_cost = expected_f.squaredNorm() / 2.0; |
| |
| double actual_cost; |
| Vector actual_f(5); |
| EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| nullptr)); |
| |
| EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_cost; |
| EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_f; |
| } |
| |
| TEST_F(ProblemEvaluateResidualBlockTest, |
| OneResidualBlockNoLossFunctionCostResidualAndOneJacobian) { |
| ResidualBlockId residual_block_id = |
| problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| Vector expected_f(5); |
| expected_f << 1, 2, 1, 2, 3; |
| Matrix expected_dfdx = Matrix::Zero(5, 2); |
| expected_dfdx.block(0, 0, 2, 2) = Matrix::Identity(2, 2); |
| double expected_cost = expected_f.squaredNorm() / 2.0; |
| |
| double actual_cost; |
| Vector actual_f(5); |
| Matrix actual_dfdx(5, 2); |
| double* jacobians[2] = {actual_dfdx.data(), nullptr}; |
| EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| |
| EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_cost; |
| EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_f; |
| EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_dfdx; |
| } |
| |
| TEST_F(ProblemEvaluateResidualBlockTest, |
| OneResidualBlockNoLossFunctionResidual) { |
| ResidualBlockId residual_block_id = |
| problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| Vector expected_f(5); |
| expected_f << 1, 2, 1, 2, 3; |
| Vector actual_f(5); |
| EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| nullptr, |
| actual_f.data(), |
| nullptr)); |
| |
| EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_f; |
| } |
| |
| TEST_F(ProblemEvaluateResidualBlockTest, OneResidualBlockWithLossFunction) { |
| ResidualBlockId residual_block_id = |
| problem_.AddResidualBlock(IdentityFunctor::Create(), |
| new ScaledLoss(nullptr, 2.0, TAKE_OWNERSHIP), |
| x_, |
| y_); |
| Vector expected_f(5); |
| expected_f << 1, 2, 1, 2, 3; |
| expected_f *= std::sqrt(loss_function_scale_); |
| Matrix expected_dfdx = Matrix::Zero(5, 2); |
| expected_dfdx.block(0, 0, 2, 2) = Matrix::Identity(2, 2); |
| expected_dfdx *= std::sqrt(loss_function_scale_); |
| Matrix expected_dfdy = Matrix::Zero(5, 3); |
| expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| expected_dfdy *= std::sqrt(loss_function_scale_); |
| double expected_cost = expected_f.squaredNorm() / 2.0; |
| |
| double actual_cost; |
| Vector actual_f(5); |
| Matrix actual_dfdx(5, 2); |
| Matrix actual_dfdy(5, 3); |
| double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| |
| EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_cost; |
| EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_f; |
| EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_dfdx; |
| EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_dfdy; |
| } |
| |
| TEST_F(ProblemEvaluateResidualBlockTest, |
| OneResidualBlockWithLossFunctionDisabled) { |
| ResidualBlockId residual_block_id = |
| problem_.AddResidualBlock(IdentityFunctor::Create(), |
| new ScaledLoss(nullptr, 2.0, TAKE_OWNERSHIP), |
| x_, |
| y_); |
| Vector expected_f(5); |
| expected_f << 1, 2, 1, 2, 3; |
| Matrix expected_dfdx = Matrix::Zero(5, 2); |
| expected_dfdx.block(0, 0, 2, 2) = Matrix::Identity(2, 2); |
| Matrix expected_dfdy = Matrix::Zero(5, 3); |
| expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| double expected_cost = expected_f.squaredNorm() / 2.0; |
| |
| double actual_cost; |
| Vector actual_f(5); |
| Matrix actual_dfdx(5, 2); |
| Matrix actual_dfdy(5, 3); |
| double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| kDoNotApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| |
| EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_cost; |
| EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_f; |
| EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_dfdx; |
| EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_dfdy; |
| } |
| |
| TEST_F(ProblemEvaluateResidualBlockTest, |
| OneResidualBlockWithOneLocalParameterization) { |
| ResidualBlockId residual_block_id = |
| problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| problem_.SetParameterization(x_, new SubsetParameterization(2, {1})); |
| |
| Vector expected_f(5); |
| expected_f << 1, 2, 1, 2, 3; |
| Matrix expected_dfdx = Matrix::Zero(5, 1); |
| expected_dfdx.block(0, 0, 1, 1) = Matrix::Identity(1, 1); |
| Matrix expected_dfdy = Matrix::Zero(5, 3); |
| expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| double expected_cost = expected_f.squaredNorm() / 2.0; |
| |
| double actual_cost; |
| Vector actual_f(5); |
| Matrix actual_dfdx(5, 1); |
| Matrix actual_dfdy(5, 3); |
| double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| |
| EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_cost; |
| EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_f; |
| EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_dfdx; |
| EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_dfdy; |
| } |
| |
| TEST_F(ProblemEvaluateResidualBlockTest, |
| OneResidualBlockWithTwoLocalParameterizations) { |
| ResidualBlockId residual_block_id = |
| problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| problem_.SetParameterization(x_, new SubsetParameterization(2, {1})); |
| problem_.SetParameterization(y_, new SubsetParameterization(3, {2})); |
| |
| Vector expected_f(5); |
| expected_f << 1, 2, 1, 2, 3; |
| Matrix expected_dfdx = Matrix::Zero(5, 1); |
| expected_dfdx.block(0, 0, 1, 1) = Matrix::Identity(1, 1); |
| Matrix expected_dfdy = Matrix::Zero(5, 2); |
| expected_dfdy.block(2, 0, 2, 2) = Matrix::Identity(2, 2); |
| double expected_cost = expected_f.squaredNorm() / 2.0; |
| |
| double actual_cost; |
| Vector actual_f(5); |
| Matrix actual_dfdx(5, 1); |
| Matrix actual_dfdy(5, 2); |
| double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| |
| EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_cost; |
| EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_f; |
| EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_dfdx; |
| EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_dfdy; |
| } |
| |
| TEST_F(ProblemEvaluateResidualBlockTest, |
| OneResidualBlockWithOneConstantParameterBlock) { |
| ResidualBlockId residual_block_id = |
| problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| problem_.SetParameterBlockConstant(x_); |
| |
| Vector expected_f(5); |
| expected_f << 1, 2, 1, 2, 3; |
| Matrix expected_dfdy = Matrix::Zero(5, 3); |
| expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| double expected_cost = expected_f.squaredNorm() / 2.0; |
| |
| double actual_cost; |
| Vector actual_f(5); |
| Matrix actual_dfdx(5, 2); |
| Matrix actual_dfdy(5, 3); |
| |
| // Try evaluating both Jacobians, this should fail. |
| double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| EXPECT_FALSE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| |
| jacobians[0] = nullptr; |
| EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| |
| EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_cost; |
| EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_f; |
| EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_dfdy; |
| } |
| |
| TEST_F(ProblemEvaluateResidualBlockTest, |
| OneResidualBlockWithAllConstantParameterBlocks) { |
| ResidualBlockId residual_block_id = |
| problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| problem_.SetParameterBlockConstant(x_); |
| problem_.SetParameterBlockConstant(y_); |
| |
| Vector expected_f(5); |
| expected_f << 1, 2, 1, 2, 3; |
| double expected_cost = expected_f.squaredNorm() / 2.0; |
| |
| double actual_cost; |
| Vector actual_f(5); |
| Matrix actual_dfdx(5, 2); |
| Matrix actual_dfdy(5, 3); |
| |
| // Try evaluating with one or more Jacobians, this should fail. |
| double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| EXPECT_FALSE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| |
| jacobians[0] = nullptr; |
| EXPECT_FALSE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| jacobians[1] = nullptr; |
| EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| |
| EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_cost; |
| EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_f; |
| } |
| |
| TEST_F(ProblemEvaluateResidualBlockTest, |
| OneResidualBlockWithOneParameterBlockConstantAndParameterBlockChanged) { |
| ResidualBlockId residual_block_id = |
| problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| problem_.SetParameterBlockConstant(x_); |
| |
| x_[0] = 2; |
| y_[2] = 1; |
| Vector expected_f(5); |
| expected_f << 2, 2, 1, 2, 1; |
| Matrix expected_dfdy = Matrix::Zero(5, 3); |
| expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| double expected_cost = expected_f.squaredNorm() / 2.0; |
| |
| double actual_cost; |
| Vector actual_f(5); |
| Matrix actual_dfdx(5, 2); |
| Matrix actual_dfdy(5, 3); |
| |
| // Try evaluating with one or more Jacobians, this should fail. |
| double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| EXPECT_FALSE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| |
| jacobians[0] = nullptr; |
| EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| kApplyLossFunction, |
| kNewPoint, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_cost; |
| EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_f; |
| EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 0, |
| std::numeric_limits<double>::epsilon()) |
| << actual_dfdy; |
| } |
| |
| TEST(Problem, SetAndGetParameterLowerBound) { |
| Problem problem; |
| double x[] = {1.0, 2.0}; |
| problem.AddParameterBlock(x, 2); |
| |
| EXPECT_EQ(problem.GetParameterLowerBound(x, 0), |
| -std::numeric_limits<double>::max()); |
| EXPECT_EQ(problem.GetParameterLowerBound(x, 1), |
| -std::numeric_limits<double>::max()); |
| |
| problem.SetParameterLowerBound(x, 0, -1.0); |
| EXPECT_EQ(problem.GetParameterLowerBound(x, 0), -1.0); |
| EXPECT_EQ(problem.GetParameterLowerBound(x, 1), |
| -std::numeric_limits<double>::max()); |
| |
| problem.SetParameterLowerBound(x, 0, -2.0); |
| EXPECT_EQ(problem.GetParameterLowerBound(x, 0), -2.0); |
| EXPECT_EQ(problem.GetParameterLowerBound(x, 1), |
| -std::numeric_limits<double>::max()); |
| |
| problem.SetParameterLowerBound(x, 0, -std::numeric_limits<double>::max()); |
| EXPECT_EQ(problem.GetParameterLowerBound(x, 0), |
| -std::numeric_limits<double>::max()); |
| EXPECT_EQ(problem.GetParameterLowerBound(x, 1), |
| -std::numeric_limits<double>::max()); |
| } |
| |
| TEST(Problem, SetAndGetParameterUpperBound) { |
| Problem problem; |
| double x[] = {1.0, 2.0}; |
| problem.AddParameterBlock(x, 2); |
| |
| EXPECT_EQ(problem.GetParameterUpperBound(x, 0), |
| std::numeric_limits<double>::max()); |
| EXPECT_EQ(problem.GetParameterUpperBound(x, 1), |
| std::numeric_limits<double>::max()); |
| |
| problem.SetParameterUpperBound(x, 0, -1.0); |
| EXPECT_EQ(problem.GetParameterUpperBound(x, 0), -1.0); |
| EXPECT_EQ(problem.GetParameterUpperBound(x, 1), |
| std::numeric_limits<double>::max()); |
| |
| problem.SetParameterUpperBound(x, 0, -2.0); |
| EXPECT_EQ(problem.GetParameterUpperBound(x, 0), -2.0); |
| EXPECT_EQ(problem.GetParameterUpperBound(x, 1), |
| std::numeric_limits<double>::max()); |
| |
| problem.SetParameterUpperBound(x, 0, std::numeric_limits<double>::max()); |
| EXPECT_EQ(problem.GetParameterUpperBound(x, 0), |
| std::numeric_limits<double>::max()); |
| EXPECT_EQ(problem.GetParameterUpperBound(x, 1), |
| std::numeric_limits<double>::max()); |
| } |
| |
| TEST(Problem, SetParameterizationTwice) { |
| Problem problem; |
| double x[] = {1.0, 2.0, 3.0}; |
| problem.AddParameterBlock(x, 3); |
| problem.SetParameterization(x, new SubsetParameterization(3, {1})); |
| EXPECT_EQ(problem.GetParameterization(x)->GlobalSize(), 3); |
| EXPECT_EQ(problem.GetParameterization(x)->LocalSize(), 2); |
| |
| problem.SetParameterization(x, new SubsetParameterization(3, {0, 1})); |
| EXPECT_EQ(problem.GetParameterization(x)->GlobalSize(), 3); |
| EXPECT_EQ(problem.GetParameterization(x)->LocalSize(), 1); |
| } |
| |
| TEST(Problem, SetParameterizationAndThenClearItWithNull) { |
| Problem problem; |
| double x[] = {1.0, 2.0, 3.0}; |
| problem.AddParameterBlock(x, 3); |
| problem.SetParameterization(x, new SubsetParameterization(3, {1})); |
| EXPECT_EQ(problem.GetParameterization(x)->GlobalSize(), 3); |
| EXPECT_EQ(problem.GetParameterization(x)->LocalSize(), 2); |
| |
| problem.SetParameterization(x, nullptr); |
| EXPECT_EQ(problem.GetParameterization(x), nullptr); |
| EXPECT_EQ(problem.ParameterBlockLocalSize(x), 3); |
| EXPECT_EQ(problem.ParameterBlockSize(x), 3); |
| } |
| |
| TEST(Solver, ZeroSizedLocalParameterizationMeansParameterBlockIsConstant) { |
| double x = 0.0; |
| double y = 1.0; |
| Problem problem; |
| problem.AddResidualBlock(new BinaryCostFunction(1, 1, 1), nullptr, &x, &y); |
| problem.SetParameterization(&y, new SubsetParameterization(1, {0})); |
| EXPECT_TRUE(problem.IsParameterBlockConstant(&y)); |
| } |
| |
| class MockEvaluationCallback : public EvaluationCallback { |
| public: |
| MOCK_METHOD2(PrepareForEvaluation, void(bool, bool)); |
| }; |
| |
| TEST(ProblemEvaluate, CallsEvaluationCallbackWithoutJacobian) { |
| constexpr bool kDoNotComputeJacobians = false; |
| constexpr bool kNewPoint = true; |
| |
| MockEvaluationCallback evaluation_callback; |
| EXPECT_CALL(evaluation_callback, |
| PrepareForEvaluation(kDoNotComputeJacobians, kNewPoint)) |
| .Times(1); |
| |
| Problem::Options options; |
| options.evaluation_callback = &evaluation_callback; |
| ProblemImpl problem(options); |
| double x_[2] = {1, 2}; |
| double y_[3] = {1, 2, 3}; |
| problem.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| |
| double actual_cost; |
| EXPECT_TRUE(problem.Evaluate( |
| Problem::EvaluateOptions(), &actual_cost, nullptr, nullptr, nullptr)); |
| } |
| |
| TEST(ProblemEvaluate, CallsEvaluationCallbackWithJacobian) { |
| constexpr bool kComputeJacobians = true; |
| constexpr bool kNewPoint = true; |
| |
| MockEvaluationCallback evaluation_callback; |
| EXPECT_CALL(evaluation_callback, |
| PrepareForEvaluation(kComputeJacobians, kNewPoint)) |
| .Times(1); |
| |
| Problem::Options options; |
| options.evaluation_callback = &evaluation_callback; |
| ProblemImpl problem(options); |
| double x_[2] = {1, 2}; |
| double y_[3] = {1, 2, 3}; |
| problem.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| |
| double actual_cost; |
| ceres::CRSMatrix jacobian; |
| EXPECT_TRUE(problem.Evaluate( |
| Problem::EvaluateOptions(), &actual_cost, nullptr, nullptr, &jacobian)); |
| } |
| |
| TEST(ProblemEvaluateResidualBlock, NewPointCallsEvaluationCallback) { |
| constexpr bool kComputeJacobians = true; |
| constexpr bool kNewPoint = true; |
| |
| MockEvaluationCallback evaluation_callback; |
| EXPECT_CALL(evaluation_callback, |
| PrepareForEvaluation(kComputeJacobians, kNewPoint)) |
| .Times(1); |
| |
| Problem::Options options; |
| options.evaluation_callback = &evaluation_callback; |
| ProblemImpl problem(options); |
| double x_[2] = {1, 2}; |
| double y_[3] = {1, 2, 3}; |
| ResidualBlockId residual_block_id = |
| problem.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| |
| double actual_cost; |
| Vector actual_f(5); |
| Matrix actual_dfdx(5, 2); |
| Matrix actual_dfdy(5, 3); |
| double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| EXPECT_TRUE(problem.EvaluateResidualBlock( |
| residual_block_id, true, true, &actual_cost, actual_f.data(), jacobians)); |
| } |
| |
| TEST(ProblemEvaluateResidualBlock, OldPointCallsEvaluationCallback) { |
| constexpr bool kComputeJacobians = true; |
| constexpr bool kOldPoint = false; |
| |
| MockEvaluationCallback evaluation_callback; |
| EXPECT_CALL(evaluation_callback, |
| PrepareForEvaluation(kComputeJacobians, kOldPoint)) |
| .Times(1); |
| |
| Problem::Options options; |
| options.evaluation_callback = &evaluation_callback; |
| ProblemImpl problem(options); |
| double x_[2] = {1, 2}; |
| double y_[3] = {1, 2, 3}; |
| ResidualBlockId residual_block_id = |
| problem.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| |
| double actual_cost; |
| Vector actual_f(5); |
| Matrix actual_dfdx(5, 2); |
| Matrix actual_dfdy(5, 3); |
| double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| EXPECT_TRUE(problem.EvaluateResidualBlock(residual_block_id, |
| true, |
| false, |
| &actual_cost, |
| actual_f.data(), |
| jacobians)); |
| } |
| |
| } // namespace internal |
| } // namespace ceres |