| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2019 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_INTERNAL_SCHUR_ELIMINATOR_H_ |
| #define CERES_INTERNAL_SCHUR_ELIMINATOR_H_ |
| |
| #include <map> |
| #include <memory> |
| #include <mutex> |
| #include <vector> |
| |
| #include "Eigen/Dense" |
| #include "ceres/block_random_access_matrix.h" |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/block_structure.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/port.h" |
| #include "ceres/linear_solver.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| // Classes implementing the SchurEliminatorBase interface implement |
| // variable elimination for linear least squares problems. Assuming |
| // that the input linear system Ax = b can be partitioned into |
| // |
| // E y + F z = b |
| // |
| // Where x = [y;z] is a partition of the variables. The partitioning |
| // of the variables is such that, E'E is a block diagonal matrix. Or |
| // in other words, the parameter blocks in E form an independent set |
| // of the of the graph implied by the block matrix A'A. Then, this |
| // class provides the functionality to compute the Schur complement |
| // system |
| // |
| // S z = r |
| // |
| // where |
| // |
| // S = F'F - F'E (E'E)^{-1} E'F and r = F'b - F'E(E'E)^(-1) E'b |
| // |
| // This is the Eliminate operation, i.e., construct the linear system |
| // obtained by eliminating the variables in E. |
| // |
| // The eliminator also provides the reverse functionality, i.e. given |
| // values for z it can back substitute for the values of y, by solving the |
| // linear system |
| // |
| // Ey = b - F z |
| // |
| // which is done by observing that |
| // |
| // y = (E'E)^(-1) [E'b - E'F z] |
| // |
| // The eliminator has a number of requirements. |
| // |
| // The rows of A are ordered so that for every variable block in y, |
| // all the rows containing that variable block occur as a vertically |
| // contiguous block. i.e the matrix A looks like |
| // |
| // E F chunk |
| // A = [ y1 0 0 0 | z1 0 0 0 z5] 1 |
| // [ y1 0 0 0 | z1 z2 0 0 0] 1 |
| // [ 0 y2 0 0 | 0 0 z3 0 0] 2 |
| // [ 0 0 y3 0 | z1 z2 z3 z4 z5] 3 |
| // [ 0 0 y3 0 | z1 0 0 0 z5] 3 |
| // [ 0 0 0 y4 | 0 0 0 0 z5] 4 |
| // [ 0 0 0 y4 | 0 z2 0 0 0] 4 |
| // [ 0 0 0 y4 | 0 0 0 0 0] 4 |
| // [ 0 0 0 0 | z1 0 0 0 0] non chunk blocks |
| // [ 0 0 0 0 | 0 0 z3 z4 z5] non chunk blocks |
| // |
| // This structure should be reflected in the corresponding |
| // CompressedRowBlockStructure object associated with A. The linear |
| // system Ax = b should either be well posed or the array D below |
| // should be non-null and the diagonal matrix corresponding to it |
| // should be non-singular. For simplicity of exposition only the case |
| // with a null D is described. |
| // |
| // The usual way to do the elimination is as follows. Starting with |
| // |
| // E y + F z = b |
| // |
| // we can form the normal equations, |
| // |
| // E'E y + E'F z = E'b |
| // F'E y + F'F z = F'b |
| // |
| // multiplying both sides of the first equation by (E'E)^(-1) and then |
| // by F'E we get |
| // |
| // F'E y + F'E (E'E)^(-1) E'F z = F'E (E'E)^(-1) E'b |
| // F'E y + F'F z = F'b |
| // |
| // now subtracting the two equations we get |
| // |
| // [FF' - F'E (E'E)^(-1) E'F] z = F'b - F'E(E'E)^(-1) E'b |
| // |
| // Instead of forming the normal equations and operating on them as |
| // general sparse matrices, the algorithm here deals with one |
| // parameter block in y at a time. The rows corresponding to a single |
| // parameter block yi are known as a chunk, and the algorithm operates |
| // on one chunk at a time. The mathematics remains the same since the |
| // reduced linear system can be shown to be the sum of the reduced |
| // linear systems for each chunk. This can be seen by observing two |
| // things. |
| // |
| // 1. E'E is a block diagonal matrix. |
| // |
| // 2. When E'F is computed, only the terms within a single chunk |
| // interact, i.e for y1 column blocks when transposed and multiplied |
| // with F, the only non-zero contribution comes from the blocks in |
| // chunk1. |
| // |
| // Thus, the reduced linear system |
| // |
| // FF' - F'E (E'E)^(-1) E'F |
| // |
| // can be re-written as |
| // |
| // sum_k F_k F_k' - F_k'E_k (E_k'E_k)^(-1) E_k' F_k |
| // |
| // Where the sum is over chunks and E_k'E_k is dense matrix of size y1 |
| // x y1. |
| // |
| // Advanced usage. Until now it has been assumed that the user would |
| // be interested in all of the Schur Complement S. However, it is also |
| // possible to use this eliminator to obtain an arbitrary submatrix of |
| // the full Schur complement. When the eliminator is generating the |
| // blocks of S, it asks the RandomAccessBlockMatrix instance passed to |
| // it if it has storage for that block. If it does, the eliminator |
| // computes/updates it, if not it is skipped. This is useful when one |
| // is interested in constructing a preconditioner based on the Schur |
| // Complement, e.g., computing the block diagonal of S so that it can |
| // be used as a preconditioner for an Iterative Substructuring based |
| // solver [See Agarwal et al, Bundle Adjustment in the Large, ECCV |
| // 2008 for an example of such use]. |
| // |
| // Example usage: Please see schur_complement_solver.cc |
| class CERES_EXPORT_INTERNAL SchurEliminatorBase { |
| public: |
| virtual ~SchurEliminatorBase() {} |
| |
| // Initialize the eliminator. It is the user's responsibilty to call |
| // this function before calling Eliminate or BackSubstitute. It is |
| // also the caller's responsibilty to ensure that the |
| // CompressedRowBlockStructure object passed to this method is the |
| // same one (or is equivalent to) the one associated with the |
| // BlockSparseMatrix objects below. |
| // |
| // assume_full_rank_ete controls how the eliminator inverts with the |
| // diagonal blocks corresponding to e blocks in A'A. If |
| // assume_full_rank_ete is true, then a Cholesky factorization is |
| // used to compute the inverse, otherwise a singular value |
| // decomposition is used to compute the pseudo inverse. |
| virtual void Init(int num_eliminate_blocks, |
| bool assume_full_rank_ete, |
| const CompressedRowBlockStructure* bs) = 0; |
| |
| // Compute the Schur complement system from the augmented linear |
| // least squares problem [A;D] x = [b;0]. The left hand side and the |
| // right hand side of the reduced linear system are returned in lhs |
| // and rhs respectively. |
| // |
| // It is the caller's responsibility to construct and initialize |
| // lhs. Depending upon the structure of the lhs object passed here, |
| // the full or a submatrix of the Schur complement will be computed. |
| // |
| // Since the Schur complement is a symmetric matrix, only the upper |
| // triangular part of the Schur complement is computed. |
| virtual void Eliminate(const BlockSparseMatrixData& A, |
| const double* b, |
| const double* D, |
| BlockRandomAccessMatrix* lhs, |
| double* rhs) = 0; |
| |
| // Given values for the variables z in the F block of A, solve for |
| // the optimal values of the variables y corresponding to the E |
| // block in A. |
| virtual void BackSubstitute(const BlockSparseMatrixData& A, |
| const double* b, |
| const double* D, |
| const double* z, |
| double* y) = 0; |
| // Factory |
| static SchurEliminatorBase* Create(const LinearSolver::Options& options); |
| }; |
| |
| // Templated implementation of the SchurEliminatorBase interface. The |
| // templating is on the sizes of the row, e and f blocks sizes in the |
| // input matrix. In many problems, the sizes of one or more of these |
| // blocks are constant, in that case, its worth passing these |
| // parameters as template arguments so that they are visible to the |
| // compiler and can be used for compile time optimization of the low |
| // level linear algebra routines. |
| template <int kRowBlockSize = Eigen::Dynamic, |
| int kEBlockSize = Eigen::Dynamic, |
| int kFBlockSize = Eigen::Dynamic> |
| class SchurEliminator : public SchurEliminatorBase { |
| public: |
| explicit SchurEliminator(const LinearSolver::Options& options) |
| : num_threads_(options.num_threads), context_(options.context) { |
| CHECK(context_ != nullptr); |
| } |
| |
| // SchurEliminatorBase Interface |
| virtual ~SchurEliminator(); |
| void Init(int num_eliminate_blocks, |
| bool assume_full_rank_ete, |
| const CompressedRowBlockStructure* bs) final; |
| void Eliminate(const BlockSparseMatrixData& A, |
| const double* b, |
| const double* D, |
| BlockRandomAccessMatrix* lhs, |
| double* rhs) final; |
| void BackSubstitute(const BlockSparseMatrixData& A, |
| const double* b, |
| const double* D, |
| const double* z, |
| double* y) final; |
| |
| private: |
| // Chunk objects store combinatorial information needed to |
| // efficiently eliminate a whole chunk out of the least squares |
| // problem. Consider the first chunk in the example matrix above. |
| // |
| // [ y1 0 0 0 | z1 0 0 0 z5] |
| // [ y1 0 0 0 | z1 z2 0 0 0] |
| // |
| // One of the intermediate quantities that needs to be calculated is |
| // for each row the product of the y block transposed with the |
| // non-zero z block, and the sum of these blocks across rows. A |
| // temporary array "buffer_" is used for computing and storing them |
| // and the buffer_layout maps the indices of the z-blocks to |
| // position in the buffer_ array. The size of the chunk is the |
| // number of row blocks/residual blocks for the particular y block |
| // being considered. |
| // |
| // For the example chunk shown above, |
| // |
| // size = 2 |
| // |
| // The entries of buffer_layout will be filled in the following order. |
| // |
| // buffer_layout[z1] = 0 |
| // buffer_layout[z5] = y1 * z1 |
| // buffer_layout[z2] = y1 * z1 + y1 * z5 |
| typedef std::map<int, int> BufferLayoutType; |
| struct Chunk { |
| Chunk() : size(0) {} |
| int size; |
| int start; |
| BufferLayoutType buffer_layout; |
| }; |
| |
| void ChunkDiagonalBlockAndGradient( |
| const Chunk& chunk, |
| const BlockSparseMatrixData& A, |
| const double* b, |
| int row_block_counter, |
| typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix* eet, |
| double* g, |
| double* buffer, |
| BlockRandomAccessMatrix* lhs); |
| |
| void UpdateRhs(const Chunk& chunk, |
| const BlockSparseMatrixData& A, |
| const double* b, |
| int row_block_counter, |
| const double* inverse_ete_g, |
| double* rhs); |
| |
| void ChunkOuterProduct(int thread_id, |
| const CompressedRowBlockStructure* bs, |
| const Matrix& inverse_eet, |
| const double* buffer, |
| const BufferLayoutType& buffer_layout, |
| BlockRandomAccessMatrix* lhs); |
| void EBlockRowOuterProduct(const BlockSparseMatrixData& A, |
| int row_block_index, |
| BlockRandomAccessMatrix* lhs); |
| |
| void NoEBlockRowsUpdate(const BlockSparseMatrixData& A, |
| const double* b, |
| int row_block_counter, |
| BlockRandomAccessMatrix* lhs, |
| double* rhs); |
| |
| void NoEBlockRowOuterProduct(const BlockSparseMatrixData& A, |
| int row_block_index, |
| BlockRandomAccessMatrix* lhs); |
| |
| int num_threads_; |
| ContextImpl* context_; |
| int num_eliminate_blocks_; |
| bool assume_full_rank_ete_; |
| |
| // Block layout of the columns of the reduced linear system. Since |
| // the f blocks can be of varying size, this vector stores the |
| // position of each f block in the row/col of the reduced linear |
| // system. Thus lhs_row_layout_[i] is the row/col position of the |
| // i^th f block. |
| std::vector<int> lhs_row_layout_; |
| |
| // Combinatorial structure of the chunks in A. For more information |
| // see the documentation of the Chunk object above. |
| std::vector<Chunk> chunks_; |
| |
| // TODO(sameeragarwal): The following two arrays contain per-thread |
| // storage. They should be refactored into a per thread struct. |
| |
| // Buffer to store the products of the y and z blocks generated |
| // during the elimination phase. buffer_ is of size num_threads * |
| // buffer_size_. Each thread accesses the chunk |
| // |
| // [thread_id * buffer_size_ , (thread_id + 1) * buffer_size_] |
| // |
| std::unique_ptr<double[]> buffer_; |
| |
| // Buffer to store per thread matrix matrix products used by |
| // ChunkOuterProduct. Like buffer_ it is of size num_threads * |
| // buffer_size_. Each thread accesses the chunk |
| // |
| // [thread_id * buffer_size_ , (thread_id + 1) * buffer_size_ -1] |
| // |
| std::unique_ptr<double[]> chunk_outer_product_buffer_; |
| |
| int buffer_size_; |
| int uneliminated_row_begins_; |
| |
| // Locks for the blocks in the right hand side of the reduced linear |
| // system. |
| std::vector<std::mutex*> rhs_locks_; |
| }; |
| |
| // SchurEliminatorForOneFBlock specializes the SchurEliminatorBase interface for |
| // the case where there is exactly one f-block and all three parameters |
| // kRowBlockSize, kEBlockSize and KFBlockSize are known at compile time. This is |
| // the case for some two view bundle adjustment problems which have very |
| // stringent latency requirements. |
| // |
| // Under these assumptions, we can simplify the more general algorithm |
| // implemented by SchurEliminatorImpl significantly. Two of the major |
| // contributors to the increased performance are: |
| // |
| // 1. Simpler loop structure and less use of dynamic memory. Almost everything |
| // is on the stack and benefits from aligned memory as well as fixed sized |
| // vectorization. We are also able to reason about temporaries and control |
| // their lifetimes better. |
| // 2. Use of inverse() over llt().solve(Identity). |
| template <int kRowBlockSize = Eigen::Dynamic, |
| int kEBlockSize = Eigen::Dynamic, |
| int kFBlockSize = Eigen::Dynamic> |
| class SchurEliminatorForOneFBlock : public SchurEliminatorBase { |
| public: |
| virtual ~SchurEliminatorForOneFBlock() {} |
| void Init(int num_eliminate_blocks, |
| bool assume_full_rank_ete, |
| const CompressedRowBlockStructure* bs) override { |
| CHECK_GT(num_eliminate_blocks, 0) |
| << "SchurComplementSolver cannot be initialized with " |
| << "num_eliminate_blocks = 0."; |
| CHECK_EQ(bs->cols.size() - num_eliminate_blocks, 1); |
| |
| num_eliminate_blocks_ = num_eliminate_blocks; |
| const int num_row_blocks = bs->rows.size(); |
| chunks_.clear(); |
| int r = 0; |
| // Iterate over the row blocks of A, and detect the chunks. The |
| // matrix should already have been ordered so that all rows |
| // containing the same y block are vertically contiguous. |
| while (r < num_row_blocks) { |
| const int e_block_id = bs->rows[r].cells.front().block_id; |
| if (e_block_id >= num_eliminate_blocks_) { |
| break; |
| } |
| |
| chunks_.push_back(Chunk()); |
| Chunk& chunk = chunks_.back(); |
| chunk.num_rows = 0; |
| chunk.start = r; |
| // Add to the chunk until the first block in the row is |
| // different than the one in the first row for the chunk. |
| while (r + chunk.num_rows < num_row_blocks) { |
| const CompressedRow& row = bs->rows[r + chunk.num_rows]; |
| if (row.cells.front().block_id != e_block_id) { |
| break; |
| } |
| ++chunk.num_rows; |
| } |
| r += chunk.num_rows; |
| } |
| |
| const Chunk& last_chunk = chunks_.back(); |
| uneliminated_row_begins_ = last_chunk.start + last_chunk.num_rows; |
| e_t_e_inverse_matrices_.resize(kEBlockSize * kEBlockSize * chunks_.size()); |
| std::fill( |
| e_t_e_inverse_matrices_.begin(), e_t_e_inverse_matrices_.end(), 0.0); |
| } |
| |
| void Eliminate(const BlockSparseMatrixData& A, |
| const double* b, |
| const double* D, |
| BlockRandomAccessMatrix* lhs_bram, |
| double* rhs_ptr) override { |
| // Since there is only one f-block, we can call GetCell once, and cache its |
| // output. |
| int r, c, row_stride, col_stride; |
| CellInfo* cell_info = |
| lhs_bram->GetCell(0, 0, &r, &c, &row_stride, &col_stride); |
| typename EigenTypes<kFBlockSize, kFBlockSize>::MatrixRef lhs( |
| cell_info->values, kFBlockSize, kFBlockSize); |
| typename EigenTypes<kFBlockSize>::VectorRef rhs(rhs_ptr, kFBlockSize); |
| |
| lhs.setZero(); |
| rhs.setZero(); |
| |
| const CompressedRowBlockStructure* bs = A.block_structure(); |
| const double* values = A.values(); |
| |
| // Add the diagonal to the schur complement. |
| if (D != nullptr) { |
| typename EigenTypes<kFBlockSize>::ConstVectorRef diag( |
| D + bs->cols[num_eliminate_blocks_].position, kFBlockSize); |
| lhs.diagonal() = diag.array().square().matrix(); |
| } |
| |
| Eigen::Matrix<double, kEBlockSize, kFBlockSize> tmp; |
| Eigen::Matrix<double, kEBlockSize, 1> tmp2; |
| |
| // The following loop works on a block matrix which looks as follows |
| // (number of rows can be anything): |
| // |
| // [e_1 | f_1] = [b1] |
| // [e_2 | f_2] = [b2] |
| // [e_3 | f_3] = [b3] |
| // [e_4 | f_4] = [b4] |
| // |
| // and computes the following |
| // |
| // e_t_e = sum_i e_i^T * e_i |
| // e_t_e_inverse = inverse(e_t_e) |
| // e_t_f = sum_i e_i^T f_i |
| // e_t_b = sum_i e_i^T b_i |
| // f_t_b = sum_i f_i^T b_i |
| // |
| // lhs += sum_i f_i^T * f_i - e_t_f^T * e_t_e_inverse * e_t_f |
| // rhs += f_t_b - e_t_f^T * e_t_e_inverse * e_t_b |
| for (int i = 0; i < chunks_.size(); ++i) { |
| const Chunk& chunk = chunks_[i]; |
| const int e_block_id = bs->rows[chunk.start].cells.front().block_id; |
| |
| // Naming covention, e_t_e = e_block.transpose() * e_block; |
| Eigen::Matrix<double, kEBlockSize, kEBlockSize> e_t_e; |
| Eigen::Matrix<double, kEBlockSize, kFBlockSize> e_t_f; |
| Eigen::Matrix<double, kEBlockSize, 1> e_t_b; |
| Eigen::Matrix<double, kFBlockSize, 1> f_t_b; |
| |
| // Add the square of the diagonal to e_t_e. |
| if (D != NULL) { |
| const typename EigenTypes<kEBlockSize>::ConstVectorRef diag( |
| D + bs->cols[e_block_id].position, kEBlockSize); |
| e_t_e = diag.array().square().matrix().asDiagonal(); |
| } else { |
| e_t_e.setZero(); |
| } |
| e_t_f.setZero(); |
| e_t_b.setZero(); |
| f_t_b.setZero(); |
| |
| for (int j = 0; j < chunk.num_rows; ++j) { |
| const int row_id = chunk.start + j; |
| const auto& row = bs->rows[row_id]; |
| const typename EigenTypes<kRowBlockSize, kEBlockSize>::ConstMatrixRef |
| e_block(values + row.cells[0].position, kRowBlockSize, kEBlockSize); |
| const typename EigenTypes<kRowBlockSize>::ConstVectorRef b_block( |
| b + row.block.position, kRowBlockSize); |
| |
| e_t_e.noalias() += e_block.transpose() * e_block; |
| e_t_b.noalias() += e_block.transpose() * b_block; |
| |
| if (row.cells.size() == 1) { |
| // There is no f block, so there is nothing more to do. |
| continue; |
| } |
| |
| const typename EigenTypes<kRowBlockSize, kFBlockSize>::ConstMatrixRef |
| f_block(values + row.cells[1].position, kRowBlockSize, kFBlockSize); |
| e_t_f.noalias() += e_block.transpose() * f_block; |
| lhs.noalias() += f_block.transpose() * f_block; |
| f_t_b.noalias() += f_block.transpose() * b_block; |
| } |
| |
| // BackSubstitute computes the same inverse, and this is the key workload |
| // there, so caching these inverses makes BackSubstitute essentially free. |
| typename EigenTypes<kEBlockSize, kEBlockSize>::MatrixRef e_t_e_inverse( |
| &e_t_e_inverse_matrices_[kEBlockSize * kEBlockSize * i], |
| kEBlockSize, |
| kEBlockSize); |
| |
| // e_t_e is a symmetric positive definite matrix, so the standard way to |
| // compute its inverse is via the Cholesky factorization by calling |
| // e_t_e.llt().solve(Identity()). However, the inverse() method even |
| // though it is not optimized for symmetric matrices is significantly |
| // faster for small fixed size (up to 4x4) matrices. |
| // |
| // https://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html#title3 |
| e_t_e_inverse.noalias() = e_t_e.inverse(); |
| |
| // The use of these two pre-allocated tmp vectors saves temporaries in the |
| // expressions for lhs and rhs updates below and has a significant impact |
| // on the performance of this method. |
| tmp.noalias() = e_t_e_inverse * e_t_f; |
| tmp2.noalias() = e_t_e_inverse * e_t_b; |
| |
| lhs.noalias() -= e_t_f.transpose() * tmp; |
| rhs.noalias() += f_t_b - e_t_f.transpose() * tmp2; |
| } |
| |
| // The rows without any e-blocks can have arbitrary size but only contain |
| // the f-block. |
| // |
| // lhs += f_i^T f_i |
| // rhs += f_i^T b_i |
| for (int row_id = uneliminated_row_begins_; row_id < bs->rows.size(); |
| ++row_id) { |
| const auto& row = bs->rows[row_id]; |
| const auto& cell = row.cells[0]; |
| const typename EigenTypes<Eigen::Dynamic, kFBlockSize>::ConstMatrixRef |
| f_block(values + cell.position, row.block.size, kFBlockSize); |
| const typename EigenTypes<Eigen::Dynamic>::ConstVectorRef b_block( |
| b + row.block.position, row.block.size); |
| lhs.noalias() += f_block.transpose() * f_block; |
| rhs.noalias() += f_block.transpose() * b_block; |
| } |
| } |
| |
| // This implementation of BackSubstitute depends on Eliminate being called |
| // before this. SchurComplementSolver always does this. |
| // |
| // y_i = e_t_e_inverse * sum_i e_i^T * (b_i - f_i * z); |
| void BackSubstitute(const BlockSparseMatrixData& A, |
| const double* b, |
| const double* D, |
| const double* z_ptr, |
| double* y) override { |
| typename EigenTypes<kFBlockSize>::ConstVectorRef z(z_ptr, kFBlockSize); |
| const CompressedRowBlockStructure* bs = A.block_structure(); |
| const double* values = A.values(); |
| Eigen::Matrix<double, kEBlockSize, 1> tmp; |
| for (int i = 0; i < chunks_.size(); ++i) { |
| const Chunk& chunk = chunks_[i]; |
| const int e_block_id = bs->rows[chunk.start].cells.front().block_id; |
| tmp.setZero(); |
| for (int j = 0; j < chunk.num_rows; ++j) { |
| const int row_id = chunk.start + j; |
| const auto& row = bs->rows[row_id]; |
| const typename EigenTypes<kRowBlockSize, kEBlockSize>::ConstMatrixRef |
| e_block(values + row.cells[0].position, kRowBlockSize, kEBlockSize); |
| const typename EigenTypes<kRowBlockSize>::ConstVectorRef b_block( |
| b + row.block.position, kRowBlockSize); |
| |
| if (row.cells.size() == 1) { |
| // There is no f block. |
| tmp += e_block.transpose() * b_block; |
| } else { |
| typename EigenTypes<kRowBlockSize, kFBlockSize>::ConstMatrixRef |
| f_block( |
| values + row.cells[1].position, kRowBlockSize, kFBlockSize); |
| tmp += e_block.transpose() * (b_block - f_block * z); |
| } |
| } |
| |
| typename EigenTypes<kEBlockSize, kEBlockSize>::MatrixRef e_t_e_inverse( |
| &e_t_e_inverse_matrices_[kEBlockSize * kEBlockSize * i], |
| kEBlockSize, |
| kEBlockSize); |
| |
| typename EigenTypes<kEBlockSize>::VectorRef y_block( |
| y + bs->cols[e_block_id].position, kEBlockSize); |
| y_block.noalias() = e_t_e_inverse * tmp; |
| } |
| } |
| |
| private: |
| struct Chunk { |
| int start = 0; |
| int num_rows = 0; |
| }; |
| |
| std::vector<Chunk> chunks_; |
| int num_eliminate_blocks_; |
| int uneliminated_row_begins_; |
| std::vector<double> e_t_e_inverse_matrices_; |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_INTERNAL_SCHUR_ELIMINATOR_H_ |