blob: bff48041368cae148f13188f66f2aca57ca8cee3 [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// A simple example of using the Ceres minimizer.
32//
33// Minimize 0.5 (10 - x)^2 using analytic jacobian matrix.
34
35#include <vector>
Keir Mierle8ebb0732012-04-30 23:09:08 -070036#include "ceres/ceres.h"
Keir Mierleefe7ac62012-06-24 22:25:28 -070037#include "glog/logging.h"
Keir Mierle8ebb0732012-04-30 23:09:08 -070038
Sameer Agarwal085cd4a2013-02-06 14:31:07 -080039using ceres::CostFunction;
Keir Mierle8ebb0732012-04-30 23:09:08 -070040using ceres::SizedCostFunction;
41using ceres::Problem;
42using ceres::Solver;
43using ceres::Solve;
44
Sameer Agarwal085cd4a2013-02-06 14:31:07 -080045// A CostFunction implementing analytically derivatives for the
46// function f(x) = 10 - x.
47class QuadraticCostFunction
Keir Mierle8ebb0732012-04-30 23:09:08 -070048 : public SizedCostFunction<1 /* number of residuals */,
49 1 /* size of first parameter */> {
50 public:
Sameer Agarwal085cd4a2013-02-06 14:31:07 -080051 virtual ~QuadraticCostFunction() {}
52
Keir Mierle8ebb0732012-04-30 23:09:08 -070053 virtual bool Evaluate(double const* const* parameters,
54 double* residuals,
55 double** jacobians) const {
56 double x = parameters[0][0];
57
58 // f(x) = 10 - x.
59 residuals[0] = 10 - x;
60
61 // f'(x) = -1. Since there's only 1 parameter and that parameter
62 // has 1 dimension, there is only 1 element to fill in the
63 // jacobians.
Sameer Agarwal085cd4a2013-02-06 14:31:07 -080064 //
65 // Since the Evaluate function can be called with the jacobians
66 // pointer equal to NULL, the Evaluate function must check to see
67 // if jacobians need to be computed.
68 //
69 // For this simple problem it is overkill to check if jacobians[0]
70 // is NULL, but in general when writing more complex
71 // CostFunctions, it is possible that Ceres may only demand the
72 // derivatives w.r.t. a subset of the parameter blocks.
Keir Mierle8ebb0732012-04-30 23:09:08 -070073 if (jacobians != NULL && jacobians[0] != NULL) {
74 jacobians[0][0] = -1;
75 }
Sameer Agarwal085cd4a2013-02-06 14:31:07 -080076
Keir Mierle8ebb0732012-04-30 23:09:08 -070077 return true;
78 }
79};
80
81int main(int argc, char** argv) {
Keir Mierle8ebb0732012-04-30 23:09:08 -070082 google::InitGoogleLogging(argv[0]);
83
Sameer Agarwal085cd4a2013-02-06 14:31:07 -080084 // The variable to solve for with its initial value. It will be
85 // mutated in place by the solver.
86 double x = 0.5;
87 const double initial_x = x;
Keir Mierle8ebb0732012-04-30 23:09:08 -070088
89 // Build the problem.
90 Problem problem;
Sameer Agarwal085cd4a2013-02-06 14:31:07 -080091
Keir Mierle8ebb0732012-04-30 23:09:08 -070092 // Set up the only cost function (also known as residual).
Sameer Agarwal085cd4a2013-02-06 14:31:07 -080093 CostFunction* cost_function = new QuadraticCostFunction;
94 problem.AddResidualBlock(cost_function, NULL, &x);
Keir Mierle8ebb0732012-04-30 23:09:08 -070095
96 // Run the solver!
97 Solver::Options options;
Keir Mierle8ebb0732012-04-30 23:09:08 -070098 options.minimizer_progress_to_stdout = true;
99 Solver::Summary summary;
100 Solve(options, &problem, &summary);
Sameer Agarwal085cd4a2013-02-06 14:31:07 -0800101
Keir Mierle8ebb0732012-04-30 23:09:08 -0700102 std::cout << summary.BriefReport() << "\n";
Sameer Agarwal085cd4a2013-02-06 14:31:07 -0800103 std::cout << "x : " << initial_x
104 << " -> " << x << "\n";
105
Keir Mierle8ebb0732012-04-30 23:09:08 -0700106 return 0;
107}