blob: 26dd1927a782cb5c19b49895d8d9e38c5b079338 [file] [log] [blame]
Petter Strandmark1e3cbd92012-08-29 09:39:56 -07001// Ceres Solver - A fast non-linear least squares minimizer
Keir Mierle7492b0d2015-03-17 22:30:16 -07002// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
Petter Strandmark1e3cbd92012-08-29 09:39:56 -07004//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: strandmark@google.com (Petter Strandmark)
30
31#ifndef CERES_INTERNAL_CXSPARSE_H_
32#define CERES_INTERNAL_CXSPARSE_H_
33
Alex Stewartea765852014-05-07 20:46:17 +010034// This include must come before any #ifndef check on Ceres compile options.
35#include "ceres/internal/port.h"
36
Petter Strandmark1e3cbd92012-08-29 09:39:56 -070037#ifndef CERES_NO_CXSPARSE
38
Sameer Agarwal344c09f2013-04-20 16:07:56 -070039#include <vector>
Petter Strandmark1e3cbd92012-08-29 09:39:56 -070040#include "cs.h"
41
42namespace ceres {
43namespace internal {
44
45class CompressedRowSparseMatrix;
46class TripletSparseMatrix;
47
48// This object provides access to solving linear systems using Cholesky
49// factorization with a known symbolic factorization. This features does not
50// explicity exist in CXSparse. The methods in the class are nonstatic because
51// the class manages internal scratch space.
52class CXSparse {
53 public:
54 CXSparse();
55 ~CXSparse();
56
57 // Solves a symmetric linear system A * x = b using Cholesky factorization.
Sameer Agarwal98bf14d2012-08-30 10:26:44 -070058 // A - The system matrix.
59 // symbolic_factorization - The symbolic factorization of A. This is obtained
60 // from AnalyzeCholesky.
61 // b - The right hand size of the linear equation. This
62 // array will also recieve the solution.
Petter Strandmark1e3cbd92012-08-29 09:39:56 -070063 // Returns false if Cholesky factorization of A fails.
Sameer Agarwal98bf14d2012-08-30 10:26:44 -070064 bool SolveCholesky(cs_di* A, cs_dis* symbolic_factorization, double* b);
Petter Strandmark1e3cbd92012-08-29 09:39:56 -070065
66 // Creates a sparse matrix from a compressed-column form. No memory is
67 // allocated or copied; the structure A is filled out with info from the
68 // argument.
69 cs_di CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);
70
71 // Creates a new matrix from a triplet form. Deallocate the returned matrix
72 // with Free. May return NULL if the compression or allocation fails.
73 cs_di* CreateSparseMatrix(TripletSparseMatrix* A);
74
Sameer Agarwald5b93bf2013-04-26 21:17:49 -070075 // B = A'
76 //
77 // The returned matrix should be deallocated with Free when not used
78 // anymore.
79 cs_di* TransposeMatrix(cs_di* A);
80
81 // C = A * B
82 //
83 // The returned matrix should be deallocated with Free when not used
84 // anymore.
85 cs_di* MatrixMatrixMultiply(cs_di* A, cs_di* B);
86
Petter Strandmark1e3cbd92012-08-29 09:39:56 -070087 // Computes a symbolic factorization of A that can be used in SolveCholesky.
Sameer Agarwald5b93bf2013-04-26 21:17:49 -070088 //
Petter Strandmark1e3cbd92012-08-29 09:39:56 -070089 // The returned matrix should be deallocated with Free when not used anymore.
90 cs_dis* AnalyzeCholesky(cs_di* A);
91
Sameer Agarwald5b93bf2013-04-26 21:17:49 -070092 // Computes a symbolic factorization of A that can be used in
93 // SolveCholesky, but does not compute a fill-reducing ordering.
94 //
95 // The returned matrix should be deallocated with Free when not used anymore.
96 cs_dis* AnalyzeCholeskyWithNaturalOrdering(cs_di* A);
97
98 // Computes a symbolic factorization of A that can be used in
99 // SolveCholesky. The difference from AnalyzeCholesky is that this
100 // function first detects the block sparsity of the matrix using
101 // information about the row and column blocks and uses this block
102 // sparse matrix to find a fill-reducing ordering. This ordering is
103 // then used to find a symbolic factorization. This can result in a
104 // significant performance improvement AnalyzeCholesky on block
105 // sparse matrices.
106 //
107 // The returned matrix should be deallocated with Free when not used
108 // anymore.
Sameer Agarwal344c09f2013-04-20 16:07:56 -0700109 cs_dis* BlockAnalyzeCholesky(cs_di* A,
Sameer Agarwalbcc865f2014-12-17 07:35:09 -0800110 const std::vector<int>& row_blocks,
111 const std::vector<int>& col_blocks);
Sameer Agarwal344c09f2013-04-20 16:07:56 -0700112
Sameer Agarwald5b93bf2013-04-26 21:17:49 -0700113 // Compute an fill-reducing approximate minimum degree ordering of
114 // the matrix A. ordering should be non-NULL and should point to
115 // enough memory to hold the ordering for the rows of A.
116 void ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering);
117
Sameer Agarwal05937472013-02-11 13:57:12 -0800118 void Free(cs_di* sparse_matrix);
119 void Free(cs_dis* symbolic_factorization);
Petter Strandmark1e3cbd92012-08-29 09:39:56 -0700120
121 private:
122 // Cached scratch space
123 CS_ENTRY* scratch_;
124 int scratch_size_;
125};
126
127} // namespace internal
128} // namespace ceres
129
Sergey Sharybinf258e462013-08-15 14:50:08 +0600130#else // CERES_NO_CXSPARSE
131
Sergey Sharybinf258e462013-08-15 14:50:08 +0600132typedef void cs_dis;
133
Sameer Agarwal03159822014-07-17 14:35:18 -0700134class CXSparse {
135 public:
Sameer Agarwalbcc865f2014-12-17 07:35:09 -0800136 void Free(void* arg) {}
Sameer Agarwal03159822014-07-17 14:35:18 -0700137};
Petter Strandmark1e3cbd92012-08-29 09:39:56 -0700138#endif // CERES_NO_CXSPARSE
139
140#endif // CERES_INTERNAL_CXSPARSE_H_