blob: f86084a69afd47800da619adb1fc3ca7465d2033 [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: Sameer Agarwal (sameeragarwal@google.com)
30// David Gallup (dgallup@google.com)
31
Alex Stewartea765852014-05-07 20:46:17 +010032// This include must come before any #ifndef check on Ceres compile options.
33#include "ceres/internal/port.h"
34
Sameer Agarwal8140f0f2013-03-12 09:45:08 -070035#ifndef CERES_NO_SUITESPARSE
36
Keir Mierle8ebb0732012-04-30 23:09:08 -070037#include "ceres/canonical_views_clustering.h"
38
39#include "ceres/collections_port.h"
40#include "ceres/graph.h"
41#include "gtest/gtest.h"
42
43namespace ceres {
44namespace internal {
45
46const int kVertexIds[] = {0, 1, 2, 3};
47class CanonicalViewsTest : public ::testing::Test {
48 protected:
49 virtual void SetUp() {
50 // The graph structure is as follows.
51 //
52 // Vertex weights: 0 2 2 0
53 // V0-----V1-----V2-----V3
54 // Edge weights: 0.8 0.9 0.3
55 const double kVertexWeights[] = {0.0, 2.0, 2.0, -1.0};
56 for (int i = 0; i < 4; ++i) {
57 graph_.AddVertex(i, kVertexWeights[i]);
58 }
59 // Create self edges.
60 // CanonicalViews requires that every view "sees" itself.
61 for (int i = 0; i < 4; ++i) {
62 graph_.AddEdge(i, i, 1.0);
63 }
64
65 // Create three edges.
66 const double kEdgeWeights[] = {0.8, 0.9, 0.3};
67 for (int i = 0; i < 3; ++i) {
68 // The graph interface is directed, so remember to create both
69 // edges.
70 graph_.AddEdge(kVertexIds[i], kVertexIds[i + 1], kEdgeWeights[i]);
71 }
72 }
73
74 void ComputeClustering() {
Sameer Agarwalf06b9fa2013-10-27 21:38:13 -070075 ComputeCanonicalViewsClustering(options_, graph_, &centers_, &membership_);
Keir Mierle8ebb0732012-04-30 23:09:08 -070076 }
77
78 Graph<int> graph_;
79
80 CanonicalViewsClusteringOptions options_;
81 vector<int> centers_;
82 HashMap<int, int> membership_;
83};
84
85TEST_F(CanonicalViewsTest, ComputeCanonicalViewsTest) {
86 options_.min_views = 0;
87 options_.size_penalty_weight = 0.5;
88 options_.similarity_penalty_weight = 0.0;
89 options_.view_score_weight = 0.0;
90 ComputeClustering();
91
92 // 2 canonical views.
93 EXPECT_EQ(centers_.size(), 2);
94 EXPECT_EQ(centers_[0], kVertexIds[1]);
95 EXPECT_EQ(centers_[1], kVertexIds[3]);
96
97 // Check cluster membership.
98 EXPECT_EQ(FindOrDie(membership_, kVertexIds[0]), 0);
99 EXPECT_EQ(FindOrDie(membership_, kVertexIds[1]), 0);
100 EXPECT_EQ(FindOrDie(membership_, kVertexIds[2]), 0);
101 EXPECT_EQ(FindOrDie(membership_, kVertexIds[3]), 1);
102}
103
104// Increases size penalty so the second canonical view won't be
105// chosen.
106TEST_F(CanonicalViewsTest, SizePenaltyTest) {
107 options_.min_views = 0;
108 options_.size_penalty_weight = 2.0;
109 options_.similarity_penalty_weight = 0.0;
110 options_.view_score_weight = 0.0;
111 ComputeClustering();
112
113 // 1 canonical view.
114 EXPECT_EQ(centers_.size(), 1);
115 EXPECT_EQ(centers_[0], kVertexIds[1]);
116}
117
118
119// Increases view score weight so vertex 2 will be chosen.
120TEST_F(CanonicalViewsTest, ViewScoreTest) {
121 options_.min_views = 0;
122 options_.size_penalty_weight = 0.5;
123 options_.similarity_penalty_weight = 0.0;
124 options_.view_score_weight = 1.0;
125 ComputeClustering();
126
127 // 2 canonical views.
128 EXPECT_EQ(centers_.size(), 2);
129 EXPECT_EQ(centers_[0], kVertexIds[1]);
130 EXPECT_EQ(centers_[1], kVertexIds[2]);
131}
132
133// Increases similarity penalty so vertex 2 won't be chosen despite
134// it's view score.
135TEST_F(CanonicalViewsTest, SimilarityPenaltyTest) {
136 options_.min_views = 0;
137 options_.size_penalty_weight = 0.5;
138 options_.similarity_penalty_weight = 3.0;
139 options_.view_score_weight = 1.0;
140 ComputeClustering();
141
142 // 2 canonical views.
143 EXPECT_EQ(centers_.size(), 1);
144 EXPECT_EQ(centers_[0], kVertexIds[1]);
145}
146
147} // namespace internal
148} // namespace ceres
Sameer Agarwal8140f0f2013-03-12 09:45:08 -0700149
150#endif // CERES_NO_SUITESPARSE