Sameer Agarwal | ea11704 | 2012-08-29 18:18:48 -0700 | [diff] [blame] | 1 | NIST/ITL StRD
|
| 2 | Dataset Name: ENSO (ENSO.dat)
|
| 3 |
|
| 4 | File Format: ASCII
|
| 5 | Starting Values (lines 41 to 49)
|
| 6 | Certified Values (lines 41 to 54)
|
| 7 | Data (lines 61 to 228)
|
| 8 |
|
| 9 | Procedure: Nonlinear Least Squares Regression
|
| 10 |
|
| 11 | Description: The data are monthly averaged atmospheric pressure
|
| 12 | differences between Easter Island and Darwin,
|
| 13 | Australia. This difference drives the trade winds in
|
| 14 | the southern hemisphere. Fourier analysis of the data
|
| 15 | reveals 3 significant cycles. The annual cycle is the
|
| 16 | strongest, but cycles with periods of approximately 44
|
| 17 | and 26 months are also present. These cycles
|
| 18 | correspond to the El Nino and the Southern Oscillation.
|
| 19 | Arguments to the SIN and COS functions are in radians.
|
| 20 |
|
| 21 | Reference: Kahaner, D., C. Moler, and S. Nash, (1989).
|
| 22 | Numerical Methods and Software.
|
| 23 | Englewood Cliffs, NJ: Prentice Hall, pp. 441-445.
|
| 24 |
|
| 25 | Data: 1 Response (y = atmospheric pressure)
|
| 26 | 1 Predictor (x = time)
|
| 27 | 168 Observations
|
| 28 | Average Level of Difficulty
|
| 29 | Observed Data
|
| 30 |
|
| 31 | Model: Miscellaneous Class
|
| 32 | 9 Parameters (b1 to b9)
|
| 33 |
|
| 34 | y = b1 + b2*cos( 2*pi*x/12 ) + b3*sin( 2*pi*x/12 )
|
| 35 | + b5*cos( 2*pi*x/b4 ) + b6*sin( 2*pi*x/b4 )
|
| 36 | + b8*cos( 2*pi*x/b7 ) + b9*sin( 2*pi*x/b7 ) + e
|
| 37 |
|
| 38 | Starting values Certified Values
|
| 39 |
|
| 40 | Start 1 Start 2 Parameter Standard Deviation
|
| 41 | b1 = 11.0 10.0 1.0510749193E+01 1.7488832467E-01
|
| 42 | b2 = 3.0 3.0 3.0762128085E+00 2.4310052139E-01
|
| 43 | b3 = 0.5 0.5 5.3280138227E-01 2.4354686618E-01
|
| 44 | b4 = 40.0 44.0 4.4311088700E+01 9.4408025976E-01
|
| 45 | b5 = -0.7 -1.5 -1.6231428586E+00 2.8078369611E-01
|
| 46 | b6 = -1.3 0.5 5.2554493756E-01 4.8073701119E-01
|
| 47 | b7 = 25.0 26.0 2.6887614440E+01 4.1612939130E-01
|
| 48 | b8 = -0.3 -0.1 2.1232288488E-01 5.1460022911E-01
|
| 49 | b9 = 1.4 1.5 1.4966870418E+00 2.5434468893E-01
|
| 50 |
|
| 51 | Residual Sum of Squares: 7.8853978668E+02
|
| 52 | Residual Standard Deviation: 2.2269642403E+00
|
| 53 | Degrees of Freedom: 159
|
| 54 | Number of Observations: 168
|
| 55 |
|
| 56 |
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 | Data: y x
|
| 61 | 12.90000 1.000000
|
| 62 | 11.30000 2.000000
|
| 63 | 10.60000 3.000000
|
| 64 | 11.20000 4.000000
|
| 65 | 10.90000 5.000000
|
| 66 | 7.500000 6.000000
|
| 67 | 7.700000 7.000000
|
| 68 | 11.70000 8.000000
|
| 69 | 12.90000 9.000000
|
| 70 | 14.30000 10.000000
|
| 71 | 10.90000 11.00000
|
| 72 | 13.70000 12.00000
|
| 73 | 17.10000 13.00000
|
| 74 | 14.00000 14.00000
|
| 75 | 15.30000 15.00000
|
| 76 | 8.500000 16.00000
|
| 77 | 5.700000 17.00000
|
| 78 | 5.500000 18.00000
|
| 79 | 7.600000 19.00000
|
| 80 | 8.600000 20.00000
|
| 81 | 7.300000 21.00000
|
| 82 | 7.600000 22.00000
|
| 83 | 12.70000 23.00000
|
| 84 | 11.00000 24.00000
|
| 85 | 12.70000 25.00000
|
| 86 | 12.90000 26.00000
|
| 87 | 13.00000 27.00000
|
| 88 | 10.90000 28.00000
|
| 89 | 10.400000 29.00000
|
| 90 | 10.200000 30.00000
|
| 91 | 8.000000 31.00000
|
| 92 | 10.90000 32.00000
|
| 93 | 13.60000 33.00000
|
| 94 | 10.500000 34.00000
|
| 95 | 9.200000 35.00000
|
| 96 | 12.40000 36.00000
|
| 97 | 12.70000 37.00000
|
| 98 | 13.30000 38.00000
|
| 99 | 10.100000 39.00000
|
| 100 | 7.800000 40.00000
|
| 101 | 4.800000 41.00000
|
| 102 | 3.000000 42.00000
|
| 103 | 2.500000 43.00000
|
| 104 | 6.300000 44.00000
|
| 105 | 9.700000 45.00000
|
| 106 | 11.60000 46.00000
|
| 107 | 8.600000 47.00000
|
| 108 | 12.40000 48.00000
|
| 109 | 10.500000 49.00000
|
| 110 | 13.30000 50.00000
|
| 111 | 10.400000 51.00000
|
| 112 | 8.100000 52.00000
|
| 113 | 3.700000 53.00000
|
| 114 | 10.70000 54.00000
|
| 115 | 5.100000 55.00000
|
| 116 | 10.400000 56.00000
|
| 117 | 10.90000 57.00000
|
| 118 | 11.70000 58.00000
|
| 119 | 11.40000 59.00000
|
| 120 | 13.70000 60.00000
|
| 121 | 14.10000 61.00000
|
| 122 | 14.00000 62.00000
|
| 123 | 12.50000 63.00000
|
| 124 | 6.300000 64.00000
|
| 125 | 9.600000 65.00000
|
| 126 | 11.70000 66.00000
|
| 127 | 5.000000 67.00000
|
| 128 | 10.80000 68.00000
|
| 129 | 12.70000 69.00000
|
| 130 | 10.80000 70.00000
|
| 131 | 11.80000 71.00000
|
| 132 | 12.60000 72.00000
|
| 133 | 15.70000 73.00000
|
| 134 | 12.60000 74.00000
|
| 135 | 14.80000 75.00000
|
| 136 | 7.800000 76.00000
|
| 137 | 7.100000 77.00000
|
| 138 | 11.20000 78.00000
|
| 139 | 8.100000 79.00000
|
| 140 | 6.400000 80.00000
|
| 141 | 5.200000 81.00000
|
| 142 | 12.00000 82.00000
|
| 143 | 10.200000 83.00000
|
| 144 | 12.70000 84.00000
|
| 145 | 10.200000 85.00000
|
| 146 | 14.70000 86.00000
|
| 147 | 12.20000 87.00000
|
| 148 | 7.100000 88.00000
|
| 149 | 5.700000 89.00000
|
| 150 | 6.700000 90.00000
|
| 151 | 3.900000 91.00000
|
| 152 | 8.500000 92.00000
|
| 153 | 8.300000 93.00000
|
| 154 | 10.80000 94.00000
|
| 155 | 16.70000 95.00000
|
| 156 | 12.60000 96.00000
|
| 157 | 12.50000 97.00000
|
| 158 | 12.50000 98.00000
|
| 159 | 9.800000 99.00000
|
| 160 | 7.200000 100.00000
|
| 161 | 4.100000 101.00000
|
| 162 | 10.60000 102.00000
|
| 163 | 10.100000 103.00000
|
| 164 | 10.100000 104.00000
|
| 165 | 11.90000 105.00000
|
| 166 | 13.60000 106.0000
|
| 167 | 16.30000 107.0000
|
| 168 | 17.60000 108.0000
|
| 169 | 15.50000 109.0000
|
| 170 | 16.00000 110.0000
|
| 171 | 15.20000 111.0000
|
| 172 | 11.20000 112.0000
|
| 173 | 14.30000 113.0000
|
| 174 | 14.50000 114.0000
|
| 175 | 8.500000 115.0000
|
| 176 | 12.00000 116.0000
|
| 177 | 12.70000 117.0000
|
| 178 | 11.30000 118.0000
|
| 179 | 14.50000 119.0000
|
| 180 | 15.10000 120.0000
|
| 181 | 10.400000 121.0000
|
| 182 | 11.50000 122.0000
|
| 183 | 13.40000 123.0000
|
| 184 | 7.500000 124.0000
|
| 185 | 0.6000000 125.0000
|
| 186 | 0.3000000 126.0000
|
| 187 | 5.500000 127.0000
|
| 188 | 5.000000 128.0000
|
| 189 | 4.600000 129.0000
|
| 190 | 8.200000 130.0000
|
| 191 | 9.900000 131.0000
|
| 192 | 9.200000 132.0000
|
| 193 | 12.50000 133.0000
|
| 194 | 10.90000 134.0000
|
| 195 | 9.900000 135.0000
|
| 196 | 8.900000 136.0000
|
| 197 | 7.600000 137.0000
|
| 198 | 9.500000 138.0000
|
| 199 | 8.400000 139.0000
|
| 200 | 10.70000 140.0000
|
| 201 | 13.60000 141.0000
|
| 202 | 13.70000 142.0000
|
| 203 | 13.70000 143.0000
|
| 204 | 16.50000 144.0000
|
| 205 | 16.80000 145.0000
|
| 206 | 17.10000 146.0000
|
| 207 | 15.40000 147.0000
|
| 208 | 9.500000 148.0000
|
| 209 | 6.100000 149.0000
|
| 210 | 10.100000 150.0000
|
| 211 | 9.300000 151.0000
|
| 212 | 5.300000 152.0000
|
| 213 | 11.20000 153.0000
|
| 214 | 16.60000 154.0000
|
| 215 | 15.60000 155.0000
|
| 216 | 12.00000 156.0000
|
| 217 | 11.50000 157.0000
|
| 218 | 8.600000 158.0000
|
| 219 | 13.80000 159.0000
|
| 220 | 8.700000 160.0000
|
| 221 | 8.600000 161.0000
|
| 222 | 8.600000 162.0000
|
| 223 | 8.700000 163.0000
|
| 224 | 12.80000 164.0000
|
| 225 | 13.20000 165.0000
|
| 226 | 14.00000 166.0000
|
| 227 | 13.40000 167.0000
|
| 228 | 14.80000 168.0000
|