Sameer Agarwal | ea11704 | 2012-08-29 18:18:48 -0700 | [diff] [blame] | 1 | NIST/ITL StRD
|
| 2 | Dataset Name: MGH09 (MGH09.dat)
|
| 3 |
|
| 4 | File Format: ASCII
|
| 5 | Starting Values (lines 41 to 44)
|
| 6 | Certified Values (lines 41 to 49)
|
| 7 | Data (lines 61 to 71)
|
| 8 |
|
| 9 | Procedure: Nonlinear Least Squares Regression
|
| 10 |
|
| 11 | Description: This problem was found to be difficult for some very
|
| 12 | good algorithms. There is a local minimum at (+inf,
|
| 13 | -14.07..., -inf, -inf) with final sum of squares
|
| 14 | 0.00102734....
|
| 15 |
|
| 16 | See More, J. J., Garbow, B. S., and Hillstrom, K. E.
|
| 17 | (1981). Testing unconstrained optimization software.
|
| 18 | ACM Transactions on Mathematical Software. 7(1):
|
| 19 | pp. 17-41.
|
| 20 |
|
| 21 | Reference: Kowalik, J.S., and M. R. Osborne, (1978).
|
| 22 | Methods for Unconstrained Optimization Problems.
|
| 23 | New York, NY: Elsevier North-Holland.
|
| 24 |
|
| 25 | Data: 1 Response (y)
|
| 26 | 1 Predictor (x)
|
| 27 | 11 Observations
|
| 28 | Higher Level of Difficulty
|
| 29 | Generated Data
|
| 30 |
|
| 31 | Model: Rational Class (linear/quadratic)
|
| 32 | 4 Parameters (b1 to b4)
|
| 33 |
|
| 34 | y = b1*(x**2+x*b2) / (x**2+x*b3+b4) + e
|
| 35 |
|
| 36 |
|
| 37 |
|
| 38 | Starting values Certified Values
|
| 39 |
|
| 40 | Start 1 Start 2 Parameter Standard Deviation
|
| 41 | b1 = 25 0.25 1.9280693458E-01 1.1435312227E-02
|
| 42 | b2 = 39 0.39 1.9128232873E-01 1.9633220911E-01
|
| 43 | b3 = 41.5 0.415 1.2305650693E-01 8.0842031232E-02
|
| 44 | b4 = 39 0.39 1.3606233068E-01 9.0025542308E-02
|
| 45 |
|
| 46 | Residual Sum of Squares: 3.0750560385E-04
|
| 47 | Residual Standard Deviation: 6.6279236551E-03
|
| 48 | Degrees of Freedom: 7
|
| 49 | Number of Observations: 11
|
| 50 |
|
| 51 |
|
| 52 |
|
| 53 |
|
| 54 |
|
| 55 |
|
| 56 |
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 | Data: y x
|
| 61 | 1.957000E-01 4.000000E+00
|
| 62 | 1.947000E-01 2.000000E+00
|
| 63 | 1.735000E-01 1.000000E+00
|
| 64 | 1.600000E-01 5.000000E-01
|
| 65 | 8.440000E-02 2.500000E-01
|
| 66 | 6.270000E-02 1.670000E-01
|
| 67 | 4.560000E-02 1.250000E-01
|
| 68 | 3.420000E-02 1.000000E-01
|
| 69 | 3.230000E-02 8.330000E-02
|
| 70 | 2.350000E-02 7.140000E-02
|
| 71 | 2.460000E-02 6.250000E-02
|