Sameer Agarwal | 344c09f | 2013-04-20 16:07:56 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2013 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/compressed_col_sparse_matrix_utils.h" |
| 32 | |
| 33 | #include <vector> |
Taylor Braun-Jones | 5ed7167 | 2013-05-06 16:06:43 -0400 | [diff] [blame] | 34 | #include <algorithm> |
Sameer Agarwal | 344c09f | 2013-04-20 16:07:56 -0700 | [diff] [blame] | 35 | #include "ceres/internal/port.h" |
| 36 | #include "glog/logging.h" |
| 37 | |
| 38 | namespace ceres { |
| 39 | namespace internal { |
| 40 | |
| 41 | void CompressedColumnScalarMatrixToBlockMatrix(const int* scalar_rows, |
| 42 | const int* scalar_cols, |
| 43 | const vector<int>& row_blocks, |
| 44 | const vector<int>& col_blocks, |
| 45 | vector<int>* block_rows, |
| 46 | vector<int>* block_cols) { |
| 47 | CHECK_NOTNULL(block_rows)->clear(); |
| 48 | CHECK_NOTNULL(block_cols)->clear(); |
| 49 | const int num_row_blocks = row_blocks.size(); |
| 50 | const int num_col_blocks = col_blocks.size(); |
| 51 | |
| 52 | vector<int> row_block_starts(num_row_blocks); |
| 53 | for (int i = 0, cursor = 0; i < num_row_blocks; ++i) { |
| 54 | row_block_starts[i] = cursor; |
| 55 | cursor += row_blocks[i]; |
| 56 | } |
| 57 | |
| 58 | // This loop extracts the block sparsity of the scalar sparse matrix |
| 59 | // It does so by iterating over the columns, but only considering |
| 60 | // the columns corresponding to the first element of each column |
| 61 | // block. Within each column, the inner loop iterates over the rows, |
| 62 | // and detects the presence of a row block by checking for the |
| 63 | // presence of a non-zero entry corresponding to its first element. |
| 64 | block_cols->push_back(0); |
| 65 | int c = 0; |
| 66 | for (int col_block = 0; col_block < num_col_blocks; ++col_block) { |
| 67 | int column_size = 0; |
| 68 | for (int idx = scalar_cols[c]; idx < scalar_cols[c + 1]; ++idx) { |
| 69 | vector<int>::const_iterator it = lower_bound(row_block_starts.begin(), |
| 70 | row_block_starts.end(), |
| 71 | scalar_rows[idx]); |
| 72 | // Since we are using lower_bound, it will return the row id |
| 73 | // where the row block starts. For everything but the first row |
| 74 | // of the block, where these values will be the same, we can |
| 75 | // skip, as we only need the first row to detect the presence of |
| 76 | // the block. |
| 77 | // |
| 78 | // For rows all but the first row in the last row block, |
| 79 | // lower_bound will return row_block_starts.end(), but those can |
| 80 | // be skipped like the rows in other row blocks too. |
| 81 | if (it == row_block_starts.end() || *it != scalar_rows[idx]) { |
| 82 | continue; |
| 83 | } |
| 84 | |
| 85 | block_rows->push_back(it - row_block_starts.begin()); |
| 86 | ++column_size; |
| 87 | } |
| 88 | block_cols->push_back(block_cols->back() + column_size); |
| 89 | c += col_blocks[col_block]; |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | void BlockOrderingToScalarOrdering(const vector<int>& blocks, |
| 94 | const vector<int>& block_ordering, |
| 95 | vector<int>* scalar_ordering) { |
| 96 | CHECK_EQ(blocks.size(), block_ordering.size()); |
| 97 | const int num_blocks = blocks.size(); |
| 98 | |
| 99 | // block_starts = [0, block1, block1 + block2 ..] |
| 100 | vector<int> block_starts(num_blocks); |
| 101 | for (int i = 0, cursor = 0; i < num_blocks ; ++i) { |
| 102 | block_starts[i] = cursor; |
| 103 | cursor += blocks[i]; |
| 104 | } |
| 105 | |
| 106 | scalar_ordering->resize(block_starts.back() + blocks.back()); |
| 107 | int cursor = 0; |
| 108 | for (int i = 0; i < num_blocks; ++i) { |
| 109 | const int block_id = block_ordering[i]; |
| 110 | const int block_size = blocks[block_id]; |
| 111 | int block_position = block_starts[block_id]; |
| 112 | for (int j = 0; j < block_size; ++j) { |
| 113 | (*scalar_ordering)[cursor++] = block_position++; |
| 114 | } |
| 115 | } |
| 116 | } |
| 117 | } // namespace internal |
| 118 | } // namespace ceres |