Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
Keir Mierle | 7492b0d | 2015-03-17 22:30:16 -0700 | [diff] [blame] | 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #ifndef CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_ |
| 32 | #define CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_ |
| 33 | |
Sameer Agarwal | 2f0d724 | 2013-01-18 13:11:32 -0800 | [diff] [blame] | 34 | #include "ceres/cost_function.h" |
| 35 | #include "ceres/sized_cost_function.h" |
| 36 | #include "ceres/types.h" |
| 37 | |
| 38 | namespace ceres { |
| 39 | namespace internal { |
| 40 | |
Tal Ben-Nun | 4f049db | 2015-05-13 15:43:51 +0300 | [diff] [blame] | 41 | // Noise factor for randomized cost function. |
| 42 | static const double kNoiseFactor = 0.01; |
| 43 | |
| 44 | // Default random seed for randomized cost function. |
| 45 | static const unsigned int kRandomSeed = 1234; |
| 46 | |
Sameer Agarwal | 2f0d724 | 2013-01-18 13:11:32 -0800 | [diff] [blame] | 47 | // y1 = x1'x2 -> dy1/dx1 = x2, dy1/dx2 = x1 |
| 48 | // y2 = (x1'x2)^2 -> dy2/dx1 = 2 * x2 * (x1'x2), dy2/dx2 = 2 * x1 * (x1'x2) |
| 49 | // y3 = x2'x2 -> dy3/dx1 = 0, dy3/dx2 = 2 * x2 |
| 50 | class EasyFunctor { |
| 51 | public: |
| 52 | bool operator()(const double* x1, const double* x2, double* residuals) const; |
| 53 | void ExpectCostFunctionEvaluationIsNearlyCorrect( |
| 54 | const CostFunction& cost_function, |
Tal Ben-Nun | 4f049db | 2015-05-13 15:43:51 +0300 | [diff] [blame] | 55 | NumericDiffMethodType method) const; |
Sameer Agarwal | 2f0d724 | 2013-01-18 13:11:32 -0800 | [diff] [blame] | 56 | }; |
| 57 | |
| 58 | class EasyCostFunction : public SizedCostFunction<3, 5, 5> { |
| 59 | public: |
| 60 | virtual bool Evaluate(double const* const* parameters, |
| 61 | double* residuals, |
| 62 | double** /* not used */) const { |
| 63 | return functor_(parameters[0], parameters[1], residuals); |
| 64 | } |
| 65 | |
| 66 | private: |
| 67 | EasyFunctor functor_; |
| 68 | }; |
| 69 | |
| 70 | // y1 = sin(x1'x2) |
| 71 | // y2 = exp(-x1'x2 / 10) |
| 72 | // |
| 73 | // dy1/dx1 = x2 * cos(x1'x2), dy1/dx2 = x1 * cos(x1'x2) |
| 74 | // dy2/dx1 = -x2 * exp(-x1'x2 / 10) / 10, dy2/dx2 = -x2 * exp(-x1'x2 / 10) / 10 |
| 75 | class TranscendentalFunctor { |
| 76 | public: |
| 77 | bool operator()(const double* x1, const double* x2, double* residuals) const; |
| 78 | void ExpectCostFunctionEvaluationIsNearlyCorrect( |
| 79 | const CostFunction& cost_function, |
Tal Ben-Nun | 4f049db | 2015-05-13 15:43:51 +0300 | [diff] [blame] | 80 | NumericDiffMethodType method) const; |
Sameer Agarwal | 2f0d724 | 2013-01-18 13:11:32 -0800 | [diff] [blame] | 81 | }; |
| 82 | |
| 83 | class TranscendentalCostFunction : public SizedCostFunction<2, 5, 5> { |
| 84 | public: |
| 85 | virtual bool Evaluate(double const* const* parameters, |
| 86 | double* residuals, |
| 87 | double** /* not used */) const { |
| 88 | return functor_(parameters[0], parameters[1], residuals); |
| 89 | } |
| 90 | private: |
| 91 | TranscendentalFunctor functor_; |
| 92 | }; |
| 93 | |
Tal Ben-Nun | 4f049db | 2015-05-13 15:43:51 +0300 | [diff] [blame] | 94 | // y = exp(x), dy/dx = exp(x) |
| 95 | class ExponentialFunctor { |
| 96 | public: |
| 97 | bool operator()(const double* x1, double* residuals) const; |
| 98 | void ExpectCostFunctionEvaluationIsNearlyCorrect( |
| 99 | const CostFunction& cost_function) const; |
| 100 | }; |
| 101 | |
| 102 | class ExponentialCostFunction : public SizedCostFunction<1, 1> { |
| 103 | public: |
| 104 | virtual bool Evaluate(double const* const* parameters, |
| 105 | double* residuals, |
| 106 | double** /* not used */) const { |
| 107 | return functor_(parameters[0], residuals); |
| 108 | } |
| 109 | |
| 110 | private: |
| 111 | ExponentialFunctor functor_; |
| 112 | }; |
| 113 | |
| 114 | // Test adaptive numeric differentiation by synthetically adding random noise |
| 115 | // to a functor. |
| 116 | // y = x^2 + [random noise], dy/dx ~ 2x |
| 117 | class RandomizedFunctor { |
| 118 | public: |
| 119 | RandomizedFunctor(double noise_factor, unsigned int random_seed) |
| 120 | : noise_factor_(noise_factor), random_seed_(random_seed) { |
| 121 | } |
| 122 | |
| 123 | bool operator()(const double* x1, double* residuals) const; |
| 124 | void ExpectCostFunctionEvaluationIsNearlyCorrect( |
| 125 | const CostFunction& cost_function) const; |
| 126 | |
| 127 | private: |
| 128 | double noise_factor_; |
| 129 | unsigned int random_seed_; |
| 130 | }; |
| 131 | |
| 132 | class RandomizedCostFunction : public SizedCostFunction<1, 1> { |
| 133 | public: |
| 134 | RandomizedCostFunction(double noise_factor, unsigned int random_seed) |
| 135 | : functor_(noise_factor, random_seed) { |
| 136 | } |
| 137 | |
| 138 | virtual bool Evaluate(double const* const* parameters, |
| 139 | double* residuals, |
| 140 | double** /* not used */) const { |
| 141 | return functor_(parameters[0], residuals); |
| 142 | } |
| 143 | |
| 144 | private: |
| 145 | RandomizedFunctor functor_; |
| 146 | }; |
| 147 | |
| 148 | |
Sameer Agarwal | 2f0d724 | 2013-01-18 13:11:32 -0800 | [diff] [blame] | 149 | } // namespace internal |
| 150 | } // namespace ceres |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 151 | |
| 152 | #endif // CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_ |