blob: 2f445957c18e8801dc432f7612dfb82442a822ad [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "ceres/autodiff_cost_function.h"
32
33#include <cstddef>
34
35#include "gtest/gtest.h"
36#include "ceres/cost_function.h"
37
38namespace ceres {
39namespace internal {
40
41class BinaryScalarCost {
42 public:
43 explicit BinaryScalarCost(double a): a_(a) {}
44 template <typename T>
45 bool operator()(const T* const x, const T* const y,
46 T* cost) const {
47 cost[0] =
48 x[0] * y[0] + x[1] * y[1] - T(a_);
49 return true;
50 }
51 private:
52 double a_;
53};
54
55
56TEST(AutoDiffResidualAndJacobian, BilinearDifferentiationTest) {
57 CostFunction* cost_function =
58 new AutoDiffCostFunction<BinaryScalarCost, 1, 2, 2>(
59 new BinaryScalarCost(1.0));
60
61 double** parameters = new double*[2];
62 parameters[0] = new double[2];
63 parameters[1] = new double[2];
64
65 parameters[0][0] = 1;
66 parameters[0][1] = 2;
67
68 parameters[1][0] = 3;
69 parameters[1][1] = 4;
70
71 double** jacobians = new double*[2];
72 jacobians[0] = new double[2];
73 jacobians[1] = new double[2];
74
75
76 double residuals = 0.0;
77
78 cost_function->Evaluate(parameters, &residuals, NULL);
79 EXPECT_EQ(residuals, 10);
80 cost_function->Evaluate(parameters, &residuals, jacobians);
81
82 EXPECT_EQ(jacobians[0][0], 3);
83 EXPECT_EQ(jacobians[0][1], 4);
84 EXPECT_EQ(jacobians[1][0], 1);
85 EXPECT_EQ(jacobians[1][1], 2);
86
87 delete []jacobians[0];
88 delete []jacobians[1];
89 delete []parameters[0];
90 delete []parameters[1];
91 delete []jacobians;
92 delete []parameters;
93 delete cost_function;
94}
95
96} // namespace internal
97} // namespace ceres