Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: Sameer Agarwal (sameeragarwal@google.com) |
| 30 | // David Gallup (dgallup@google.com) |
| 31 | |
Sameer Agarwal | 8140f0f | 2013-03-12 09:45:08 -0700 | [diff] [blame] | 32 | #ifndef CERES_NO_SUITESPARSE |
| 33 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 34 | #include "ceres/canonical_views_clustering.h" |
| 35 | |
| 36 | #include "ceres/collections_port.h" |
| 37 | #include "ceres/graph.h" |
| 38 | #include "gtest/gtest.h" |
| 39 | |
| 40 | namespace ceres { |
| 41 | namespace internal { |
| 42 | |
| 43 | const int kVertexIds[] = {0, 1, 2, 3}; |
| 44 | class CanonicalViewsTest : public ::testing::Test { |
| 45 | protected: |
| 46 | virtual void SetUp() { |
| 47 | // The graph structure is as follows. |
| 48 | // |
| 49 | // Vertex weights: 0 2 2 0 |
| 50 | // V0-----V1-----V2-----V3 |
| 51 | // Edge weights: 0.8 0.9 0.3 |
| 52 | const double kVertexWeights[] = {0.0, 2.0, 2.0, -1.0}; |
| 53 | for (int i = 0; i < 4; ++i) { |
| 54 | graph_.AddVertex(i, kVertexWeights[i]); |
| 55 | } |
| 56 | // Create self edges. |
| 57 | // CanonicalViews requires that every view "sees" itself. |
| 58 | for (int i = 0; i < 4; ++i) { |
| 59 | graph_.AddEdge(i, i, 1.0); |
| 60 | } |
| 61 | |
| 62 | // Create three edges. |
| 63 | const double kEdgeWeights[] = {0.8, 0.9, 0.3}; |
| 64 | for (int i = 0; i < 3; ++i) { |
| 65 | // The graph interface is directed, so remember to create both |
| 66 | // edges. |
| 67 | graph_.AddEdge(kVertexIds[i], kVertexIds[i + 1], kEdgeWeights[i]); |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | void ComputeClustering() { |
Sameer Agarwal | f06b9fa | 2013-10-27 21:38:13 -0700 | [diff] [blame] | 72 | ComputeCanonicalViewsClustering(options_, graph_, ¢ers_, &membership_); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 73 | } |
| 74 | |
| 75 | Graph<int> graph_; |
| 76 | |
| 77 | CanonicalViewsClusteringOptions options_; |
| 78 | vector<int> centers_; |
| 79 | HashMap<int, int> membership_; |
| 80 | }; |
| 81 | |
| 82 | TEST_F(CanonicalViewsTest, ComputeCanonicalViewsTest) { |
| 83 | options_.min_views = 0; |
| 84 | options_.size_penalty_weight = 0.5; |
| 85 | options_.similarity_penalty_weight = 0.0; |
| 86 | options_.view_score_weight = 0.0; |
| 87 | ComputeClustering(); |
| 88 | |
| 89 | // 2 canonical views. |
| 90 | EXPECT_EQ(centers_.size(), 2); |
| 91 | EXPECT_EQ(centers_[0], kVertexIds[1]); |
| 92 | EXPECT_EQ(centers_[1], kVertexIds[3]); |
| 93 | |
| 94 | // Check cluster membership. |
| 95 | EXPECT_EQ(FindOrDie(membership_, kVertexIds[0]), 0); |
| 96 | EXPECT_EQ(FindOrDie(membership_, kVertexIds[1]), 0); |
| 97 | EXPECT_EQ(FindOrDie(membership_, kVertexIds[2]), 0); |
| 98 | EXPECT_EQ(FindOrDie(membership_, kVertexIds[3]), 1); |
| 99 | } |
| 100 | |
| 101 | // Increases size penalty so the second canonical view won't be |
| 102 | // chosen. |
| 103 | TEST_F(CanonicalViewsTest, SizePenaltyTest) { |
| 104 | options_.min_views = 0; |
| 105 | options_.size_penalty_weight = 2.0; |
| 106 | options_.similarity_penalty_weight = 0.0; |
| 107 | options_.view_score_weight = 0.0; |
| 108 | ComputeClustering(); |
| 109 | |
| 110 | // 1 canonical view. |
| 111 | EXPECT_EQ(centers_.size(), 1); |
| 112 | EXPECT_EQ(centers_[0], kVertexIds[1]); |
| 113 | } |
| 114 | |
| 115 | |
| 116 | // Increases view score weight so vertex 2 will be chosen. |
| 117 | TEST_F(CanonicalViewsTest, ViewScoreTest) { |
| 118 | options_.min_views = 0; |
| 119 | options_.size_penalty_weight = 0.5; |
| 120 | options_.similarity_penalty_weight = 0.0; |
| 121 | options_.view_score_weight = 1.0; |
| 122 | ComputeClustering(); |
| 123 | |
| 124 | // 2 canonical views. |
| 125 | EXPECT_EQ(centers_.size(), 2); |
| 126 | EXPECT_EQ(centers_[0], kVertexIds[1]); |
| 127 | EXPECT_EQ(centers_[1], kVertexIds[2]); |
| 128 | } |
| 129 | |
| 130 | // Increases similarity penalty so vertex 2 won't be chosen despite |
| 131 | // it's view score. |
| 132 | TEST_F(CanonicalViewsTest, SimilarityPenaltyTest) { |
| 133 | options_.min_views = 0; |
| 134 | options_.size_penalty_weight = 0.5; |
| 135 | options_.similarity_penalty_weight = 3.0; |
| 136 | options_.view_score_weight = 1.0; |
| 137 | ComputeClustering(); |
| 138 | |
| 139 | // 2 canonical views. |
| 140 | EXPECT_EQ(centers_.size(), 1); |
| 141 | EXPECT_EQ(centers_[0], kVertexIds[1]); |
| 142 | } |
| 143 | |
| 144 | } // namespace internal |
| 145 | } // namespace ceres |
Sameer Agarwal | 8140f0f | 2013-03-12 09:45:08 -0700 | [diff] [blame] | 146 | |
| 147 | #endif // CERES_NO_SUITESPARSE |