Sameer Agarwal | c367b12 | 2013-06-16 18:43:34 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2013 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/incomplete_lq_factorization.h" |
| 32 | |
| 33 | #include "Eigen/Dense" |
| 34 | #include "ceres/compressed_row_sparse_matrix.h" |
| 35 | #include "ceres/internal/scoped_ptr.h" |
| 36 | #include "glog/logging.h" |
| 37 | #include "gtest/gtest.h" |
| 38 | |
| 39 | namespace ceres { |
| 40 | namespace internal { |
| 41 | |
| 42 | void ExpectMatricesAreEqual(const CompressedRowSparseMatrix& expected, |
| 43 | const CompressedRowSparseMatrix& actual, |
| 44 | const double tolerance) { |
| 45 | EXPECT_EQ(expected.num_rows(), actual.num_rows()); |
| 46 | EXPECT_EQ(expected.num_cols(), actual.num_cols()); |
| 47 | for (int i = 0; i < expected.num_rows(); ++i) { |
| 48 | EXPECT_EQ(expected.rows()[i], actual.rows()[i]); |
| 49 | } |
| 50 | |
| 51 | for (int i = 0; i < actual.num_nonzeros(); ++i) { |
| 52 | EXPECT_EQ(expected.cols()[i], actual.cols()[i]); |
| 53 | EXPECT_NEAR(expected.values()[i], actual.values()[i], tolerance); |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | TEST(IncompleteQRFactorization, OneByOneMatrix) { |
| 58 | CompressedRowSparseMatrix matrix(1, 1, 1); |
| 59 | matrix.mutable_rows()[0] = 0; |
| 60 | matrix.mutable_rows()[1] = 1; |
| 61 | matrix.mutable_cols()[0] = 0; |
| 62 | matrix.mutable_values()[0] = 2; |
| 63 | |
| 64 | scoped_ptr<CompressedRowSparseMatrix> l( |
| 65 | IncompleteLQFactorization(matrix, 1, 0.0, 1, 0.0)); |
| 66 | ExpectMatricesAreEqual(matrix, *l, 1e-16); |
| 67 | } |
| 68 | |
| 69 | TEST(IncompleteLQFactorization, CompleteFactorization) { |
| 70 | double dense_matrix[] = { |
| 71 | 0.00000, 0.00000, 0.20522, 0.00000, 0.49077, 0.92835, 0.00000, 0.83825, 0.00000, 0.00000, // NOLINT |
| 72 | 0.00000, 0.00000, 0.00000, 0.62491, 0.38144, 0.00000, 0.79394, 0.79178, 0.00000, 0.44382, // NOLINT |
| 73 | 0.00000, 0.00000, 0.00000, 0.61517, 0.55941, 0.00000, 0.00000, 0.00000, 0.00000, 0.60664, // NOLINT |
| 74 | 0.00000, 0.00000, 0.00000, 0.00000, 0.45031, 0.00000, 0.64132, 0.00000, 0.38832, 0.00000, // NOLINT |
| 75 | 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.57121, 0.00000, 0.01375, 0.70640, 0.00000, // NOLINT |
| 76 | 0.00000, 0.00000, 0.07451, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, // NOLINT |
| 77 | 0.68095, 0.00000, 0.00000, 0.95473, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, // NOLINT |
| 78 | 0.00000, 0.00000, 0.00000, 0.00000, 0.59374, 0.00000, 0.00000, 0.00000, 0.49139, 0.00000, // NOLINT |
| 79 | 0.91276, 0.96641, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.91797, // NOLINT |
| 80 | 0.96828, 0.00000, 0.00000, 0.72583, 0.00000, 0.00000, 0.81459, 0.00000, 0.04560, 0.00000 // NOLINT |
| 81 | }; |
| 82 | |
| 83 | CompressedRowSparseMatrix matrix(10, 10, 100); |
| 84 | int* rows = matrix.mutable_rows(); |
| 85 | int* cols = matrix.mutable_cols(); |
| 86 | double* values = matrix.mutable_values(); |
| 87 | |
| 88 | int idx = 0; |
| 89 | for (int i = 0; i < 10; ++i) { |
| 90 | rows[i] = idx; |
| 91 | for (int j = 0; j < 10; ++j) { |
| 92 | const double v = dense_matrix[i * 10 + j]; |
| 93 | if (fabs(v) > 1e-6) { |
| 94 | cols[idx] = j; |
| 95 | values[idx] = v; |
| 96 | ++idx; |
| 97 | } |
| 98 | } |
| 99 | } |
| 100 | rows[10] = idx; |
| 101 | |
| 102 | scoped_ptr<CompressedRowSparseMatrix> lmatrix( |
| 103 | IncompleteLQFactorization(matrix, 10, 0.0, 10, 0.0)); |
| 104 | |
| 105 | ConstMatrixRef mref(dense_matrix, 10, 10); |
| 106 | |
| 107 | // Use Cholesky factorization to compute the L matrix. |
| 108 | Matrix expected_l_matrix = (mref * mref.transpose()).llt().matrixL(); |
| 109 | Matrix actual_l_matrix; |
| 110 | lmatrix->ToDenseMatrix(&actual_l_matrix); |
| 111 | |
| 112 | EXPECT_NEAR((expected_l_matrix * expected_l_matrix.transpose() - |
Sameer Agarwal | a427c87 | 2013-06-24 17:50:56 -0700 | [diff] [blame] | 113 | actual_l_matrix * actual_l_matrix.transpose()).norm(), |
| 114 | 0.0, |
| 115 | 1e-10) |
Sameer Agarwal | c367b12 | 2013-06-16 18:43:34 -0700 | [diff] [blame] | 116 | << "expected: \n" << expected_l_matrix |
| 117 | << "\actual: \n" << actual_l_matrix; |
| 118 | } |
| 119 | |
| 120 | TEST(IncompleteLQFactorization, DropEntriesAndAddRow) { |
| 121 | // Allocate space and then make it a zero sized matrix. |
Sameer Agarwal | a427c87 | 2013-06-24 17:50:56 -0700 | [diff] [blame] | 122 | CompressedRowSparseMatrix matrix(10, 10, 100); |
Sameer Agarwal | c367b12 | 2013-06-16 18:43:34 -0700 | [diff] [blame] | 123 | matrix.set_num_rows(0); |
| 124 | |
| 125 | vector<pair<int, double> > scratch(10); |
| 126 | |
| 127 | Vector dense_vector(10); |
| 128 | dense_vector(0) = 5; |
| 129 | dense_vector(1) = 1; |
| 130 | dense_vector(2) = 2; |
| 131 | dense_vector(3) = 3; |
| 132 | dense_vector(4) = 1; |
| 133 | dense_vector(5) = 4; |
| 134 | |
| 135 | // Add a row with just one entry. |
| 136 | DropEntriesAndAddRow(dense_vector, 1, 1, 0, &scratch, &matrix); |
| 137 | EXPECT_EQ(matrix.num_rows(), 1); |
| 138 | EXPECT_EQ(matrix.num_cols(), 10); |
| 139 | EXPECT_EQ(matrix.num_nonzeros(), 1); |
| 140 | EXPECT_EQ(matrix.values()[0], 5.0); |
| 141 | EXPECT_EQ(matrix.cols()[0], 0); |
| 142 | |
| 143 | // Add a row with six entries |
| 144 | DropEntriesAndAddRow(dense_vector, 6, 10, 0, &scratch, &matrix); |
| 145 | EXPECT_EQ(matrix.num_rows(), 2); |
| 146 | EXPECT_EQ(matrix.num_cols(), 10); |
| 147 | EXPECT_EQ(matrix.num_nonzeros(), 7); |
| 148 | for (int idx = matrix.rows()[1]; idx < matrix.rows()[2]; ++idx) { |
| 149 | EXPECT_EQ(matrix.cols()[idx], idx - matrix.rows()[1]); |
| 150 | EXPECT_EQ(matrix.values()[idx], dense_vector(idx - matrix.rows()[1])); |
| 151 | } |
| 152 | |
| 153 | // Add the top 3 entries. |
| 154 | DropEntriesAndAddRow(dense_vector, 6, 3, 0, &scratch, &matrix); |
| 155 | EXPECT_EQ(matrix.num_rows(), 3); |
| 156 | EXPECT_EQ(matrix.num_cols(), 10); |
| 157 | EXPECT_EQ(matrix.num_nonzeros(), 10); |
| 158 | |
| 159 | EXPECT_EQ(matrix.cols()[matrix.rows()[2]], 0); |
| 160 | EXPECT_EQ(matrix.cols()[matrix.rows()[2] + 1], 3); |
| 161 | EXPECT_EQ(matrix.cols()[matrix.rows()[2] + 2], 5); |
| 162 | |
| 163 | EXPECT_EQ(matrix.values()[matrix.rows()[2]], 5); |
| 164 | EXPECT_EQ(matrix.values()[matrix.rows()[2] + 1], 3); |
| 165 | EXPECT_EQ(matrix.values()[matrix.rows()[2] + 2], 4); |
| 166 | |
| 167 | // Only keep entries greater than 1.0; |
| 168 | DropEntriesAndAddRow(dense_vector, 6, 6, 0.2, &scratch, &matrix); |
| 169 | EXPECT_EQ(matrix.num_rows(), 4); |
| 170 | EXPECT_EQ(matrix.num_cols(), 10); |
| 171 | EXPECT_EQ(matrix.num_nonzeros(), 14); |
| 172 | |
| 173 | EXPECT_EQ(matrix.cols()[matrix.rows()[3]], 0); |
| 174 | EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 1], 2); |
| 175 | EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 2], 3); |
| 176 | EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 3], 5); |
| 177 | |
| 178 | EXPECT_EQ(matrix.values()[matrix.rows()[3]], 5); |
| 179 | EXPECT_EQ(matrix.values()[matrix.rows()[3] + 1], 2); |
| 180 | EXPECT_EQ(matrix.values()[matrix.rows()[3] + 2], 3); |
| 181 | EXPECT_EQ(matrix.values()[matrix.rows()[3] + 3], 4); |
| 182 | |
| 183 | // Only keep the top 2 entries greater than 1.0 |
| 184 | DropEntriesAndAddRow(dense_vector, 6, 2, 0.2, &scratch, &matrix); |
| 185 | EXPECT_EQ(matrix.num_rows(), 5); |
| 186 | EXPECT_EQ(matrix.num_cols(), 10); |
| 187 | EXPECT_EQ(matrix.num_nonzeros(), 16); |
| 188 | |
| 189 | EXPECT_EQ(matrix.cols()[matrix.rows()[4]], 0); |
| 190 | EXPECT_EQ(matrix.cols()[matrix.rows()[4] + 1], 5); |
| 191 | |
| 192 | EXPECT_EQ(matrix.values()[matrix.rows()[4]], 5); |
| 193 | EXPECT_EQ(matrix.values()[matrix.rows()[4] + 1], 4); |
| 194 | } |
| 195 | |
| 196 | |
| 197 | } // namespace internal |
| 198 | } // namespace ceres |