Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
Sameer Agarwal | 31730ef | 2013-02-28 11:20:28 -0800 | [diff] [blame] | 2 | // Copyright 2010, 2011, 2012, 2013 Google Inc. All rights reserved. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | // |
| 31 | // TODO(keir): Implement a generic "compare sparse matrix implementations" test |
| 32 | // suite that can compare all the implementations. Then this file would shrink |
| 33 | // in size. |
| 34 | |
| 35 | #include "ceres/dense_sparse_matrix.h" |
| 36 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 37 | #include "ceres/casts.h" |
| 38 | #include "ceres/linear_least_squares_problems.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 39 | #include "ceres/triplet_sparse_matrix.h" |
| 40 | #include "ceres/internal/eigen.h" |
| 41 | #include "ceres/internal/scoped_ptr.h" |
Sameer Agarwal | a1eaa26 | 2013-05-09 10:02:24 -0700 | [diff] [blame] | 42 | #include "glog/logging.h" |
| 43 | #include "gtest/gtest.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 44 | |
| 45 | namespace ceres { |
| 46 | namespace internal { |
| 47 | |
| 48 | void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) { |
| 49 | EXPECT_EQ(a->num_rows(), b->num_rows()); |
| 50 | EXPECT_EQ(a->num_cols(), b->num_cols()); |
| 51 | |
| 52 | int num_rows = a->num_rows(); |
| 53 | int num_cols = a->num_cols(); |
| 54 | |
| 55 | for (int i = 0; i < num_cols; ++i) { |
| 56 | Vector x = Vector::Zero(num_cols); |
| 57 | x(i) = 1.0; |
| 58 | |
| 59 | Vector y_a = Vector::Zero(num_rows); |
| 60 | Vector y_b = Vector::Zero(num_rows); |
| 61 | |
| 62 | a->RightMultiply(x.data(), y_a.data()); |
| 63 | b->RightMultiply(x.data(), y_b.data()); |
| 64 | |
| 65 | EXPECT_EQ((y_a - y_b).norm(), 0); |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | class DenseSparseMatrixTest : public ::testing::Test { |
| 70 | protected : |
| 71 | virtual void SetUp() { |
| 72 | scoped_ptr<LinearLeastSquaresProblem> problem( |
| 73 | CreateLinearLeastSquaresProblemFromId(1)); |
| 74 | |
| 75 | CHECK_NOTNULL(problem.get()); |
| 76 | |
| 77 | tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); |
| 78 | dsm.reset(new DenseSparseMatrix(*tsm)); |
| 79 | |
| 80 | num_rows = tsm->num_rows(); |
| 81 | num_cols = tsm->num_cols(); |
| 82 | } |
| 83 | |
| 84 | int num_rows; |
| 85 | int num_cols; |
| 86 | |
| 87 | scoped_ptr<TripletSparseMatrix> tsm; |
| 88 | scoped_ptr<DenseSparseMatrix> dsm; |
| 89 | }; |
| 90 | |
| 91 | TEST_F(DenseSparseMatrixTest, RightMultiply) { |
| 92 | CompareMatrices(tsm.get(), dsm.get()); |
| 93 | |
| 94 | // Try with a not entirely zero vector to verify column interactions, which |
| 95 | // could be masked by a subtle bug when using the elementary vectors. |
| 96 | Vector a(num_cols); |
| 97 | for (int i = 0; i < num_cols; i++) { |
| 98 | a(i) = i; |
| 99 | } |
| 100 | Vector b1 = Vector::Zero(num_rows); |
| 101 | Vector b2 = Vector::Zero(num_rows); |
| 102 | |
| 103 | tsm->RightMultiply(a.data(), b1.data()); |
| 104 | dsm->RightMultiply(a.data(), b2.data()); |
| 105 | |
| 106 | EXPECT_EQ((b1 - b2).norm(), 0); |
| 107 | } |
| 108 | |
| 109 | TEST_F(DenseSparseMatrixTest, LeftMultiply) { |
| 110 | for (int i = 0; i < num_rows; ++i) { |
| 111 | Vector a = Vector::Zero(num_rows); |
| 112 | a(i) = 1.0; |
| 113 | |
| 114 | Vector b1 = Vector::Zero(num_cols); |
| 115 | Vector b2 = Vector::Zero(num_cols); |
| 116 | |
| 117 | tsm->LeftMultiply(a.data(), b1.data()); |
| 118 | dsm->LeftMultiply(a.data(), b2.data()); |
| 119 | |
| 120 | EXPECT_EQ((b1 - b2).norm(), 0); |
| 121 | } |
| 122 | |
| 123 | // Try with a not entirely zero vector to verify column interactions, which |
| 124 | // could be masked by a subtle bug when using the elementary vectors. |
| 125 | Vector a(num_rows); |
| 126 | for (int i = 0; i < num_rows; i++) { |
| 127 | a(i) = i; |
| 128 | } |
| 129 | Vector b1 = Vector::Zero(num_cols); |
| 130 | Vector b2 = Vector::Zero(num_cols); |
| 131 | |
| 132 | tsm->LeftMultiply(a.data(), b1.data()); |
| 133 | dsm->LeftMultiply(a.data(), b2.data()); |
| 134 | |
| 135 | EXPECT_EQ((b1 - b2).norm(), 0); |
| 136 | } |
| 137 | |
| 138 | TEST_F(DenseSparseMatrixTest, ColumnNorm) { |
| 139 | Vector b1 = Vector::Zero(num_cols); |
| 140 | Vector b2 = Vector::Zero(num_cols); |
| 141 | |
| 142 | tsm->SquaredColumnNorm(b1.data()); |
| 143 | dsm->SquaredColumnNorm(b2.data()); |
| 144 | |
| 145 | EXPECT_EQ((b1 - b2).norm(), 0); |
| 146 | } |
| 147 | |
| 148 | TEST_F(DenseSparseMatrixTest, Scale) { |
| 149 | Vector scale(num_cols); |
| 150 | for (int i = 0; i < num_cols; ++i) { |
| 151 | scale(i) = i + 1; |
| 152 | } |
| 153 | tsm->ScaleColumns(scale.data()); |
| 154 | dsm->ScaleColumns(scale.data()); |
| 155 | CompareMatrices(tsm.get(), dsm.get()); |
| 156 | } |
| 157 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 158 | TEST_F(DenseSparseMatrixTest, ToDenseMatrix) { |
| 159 | Matrix tsm_dense; |
| 160 | Matrix dsm_dense; |
| 161 | |
| 162 | tsm->ToDenseMatrix(&tsm_dense); |
| 163 | dsm->ToDenseMatrix(&dsm_dense); |
| 164 | |
| 165 | EXPECT_EQ((tsm_dense - dsm_dense).norm(), 0.0); |
| 166 | } |
| 167 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 168 | } // namespace internal |
| 169 | } // namespace ceres |