Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/dogleg_strategy.h" |
| 32 | |
| 33 | #include <cmath> |
| 34 | #include "Eigen/Core" |
| 35 | #include <glog/logging.h> |
| 36 | #include "ceres/array_utils.h" |
| 37 | #include "ceres/internal/eigen.h" |
| 38 | #include "ceres/linear_solver.h" |
| 39 | #include "ceres/sparse_matrix.h" |
| 40 | #include "ceres/trust_region_strategy.h" |
| 41 | #include "ceres/types.h" |
| 42 | |
| 43 | namespace ceres { |
| 44 | namespace internal { |
| 45 | namespace { |
| 46 | const double kMaxMu = 1.0; |
| 47 | const double kMinMu = 1e-8; |
| 48 | } |
| 49 | |
| 50 | DoglegStrategy::DoglegStrategy(const TrustRegionStrategy::Options& options) |
| 51 | : linear_solver_(options.linear_solver), |
| 52 | radius_(options.initial_radius), |
| 53 | max_radius_(options.max_radius), |
| 54 | min_diagonal_(options.lm_min_diagonal), |
| 55 | max_diagonal_(options.lm_max_diagonal), |
| 56 | mu_(kMinMu), |
| 57 | min_mu_(kMinMu), |
| 58 | max_mu_(kMaxMu), |
| 59 | mu_increase_factor_(10.0), |
| 60 | increase_threshold_(0.75), |
| 61 | decrease_threshold_(0.25), |
| 62 | dogleg_step_norm_(0.0), |
| 63 | reuse_(false) { |
| 64 | CHECK_NOTNULL(linear_solver_); |
| 65 | CHECK_GT(min_diagonal_, 0.0); |
| 66 | CHECK_LT(min_diagonal_, max_diagonal_); |
| 67 | CHECK_GT(max_radius_, 0.0); |
| 68 | } |
| 69 | |
| 70 | // If the reuse_ flag is not set, then the Cauchy point (scaled |
| 71 | // gradient) and the new Gauss-Newton step are computed from |
| 72 | // scratch. The Dogleg step is then computed as interpolation of these |
| 73 | // two vectors. |
| 74 | LinearSolver::Summary DoglegStrategy::ComputeStep( |
| 75 | const TrustRegionStrategy::PerSolveOptions& per_solve_options, |
| 76 | SparseMatrix* jacobian, |
| 77 | const double* residuals, |
| 78 | double* step) { |
| 79 | CHECK_NOTNULL(jacobian); |
| 80 | CHECK_NOTNULL(residuals); |
| 81 | CHECK_NOTNULL(step); |
| 82 | |
| 83 | const int n = jacobian->num_cols(); |
| 84 | if (reuse_) { |
| 85 | // Gauss-Newton and gradient vectors are always available, only a |
| 86 | // new interpolant need to be computed. |
| 87 | ComputeDoglegStep(step); |
| 88 | LinearSolver::Summary linear_solver_summary; |
| 89 | linear_solver_summary.num_iterations = 0; |
| 90 | linear_solver_summary.termination_type = TOLERANCE; |
| 91 | return linear_solver_summary; |
| 92 | } |
| 93 | |
| 94 | reuse_ = true; |
| 95 | // Check that we have the storage needed to hold the various |
| 96 | // temporary vectors. |
| 97 | if (diagonal_.rows() != n) { |
| 98 | diagonal_.resize(n, 1); |
| 99 | gradient_.resize(n, 1); |
| 100 | gauss_newton_step_.resize(n, 1); |
| 101 | } |
| 102 | |
| 103 | // Vector used to form the diagonal matrix that is used to |
| 104 | // regularize the Gauss-Newton solve. |
| 105 | jacobian->SquaredColumnNorm(diagonal_.data()); |
| 106 | for (int i = 0; i < n; ++i) { |
| 107 | diagonal_[i] = min(max(diagonal_[i], min_diagonal_), max_diagonal_); |
| 108 | } |
| 109 | |
| 110 | gradient_.setZero(); |
| 111 | jacobian->LeftMultiply(residuals, gradient_.data()); |
| 112 | |
| 113 | // alpha * gradient is the Cauchy point. |
| 114 | Vector Jg(jacobian->num_rows()); |
| 115 | Jg.setZero(); |
| 116 | jacobian->RightMultiply(gradient_.data(), Jg.data()); |
| 117 | alpha_ = gradient_.squaredNorm() / Jg.squaredNorm(); |
| 118 | |
| 119 | LinearSolver::Summary linear_solver_summary = |
| 120 | ComputeGaussNewtonStep(jacobian, residuals); |
| 121 | |
| 122 | // Interpolate the Cauchy point and the Gauss-Newton step. |
| 123 | if (linear_solver_summary.termination_type != FAILURE) { |
| 124 | ComputeDoglegStep(step); |
| 125 | } |
| 126 | |
| 127 | return linear_solver_summary; |
| 128 | } |
| 129 | |
| 130 | void DoglegStrategy::ComputeDoglegStep(double* dogleg) { |
| 131 | VectorRef dogleg_step(dogleg, gradient_.rows()); |
| 132 | |
| 133 | // Case 1. The Gauss-Newton step lies inside the trust region, and |
| 134 | // is therefore the optimal solution to the trust-region problem. |
| 135 | const double gradient_norm = gradient_.norm(); |
| 136 | const double gauss_newton_norm = gauss_newton_step_.norm(); |
| 137 | if (gauss_newton_norm <= radius_) { |
| 138 | dogleg_step = gauss_newton_step_; |
| 139 | dogleg_step_norm_ = gauss_newton_norm; |
| 140 | VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_ |
| 141 | << " radius: " << radius_; |
| 142 | return; |
| 143 | } |
| 144 | |
| 145 | // Case 2. The Cauchy point and the Gauss-Newton steps lie outside |
| 146 | // the trust region. Rescale the Cauchy point to the trust region |
| 147 | // and return. |
| 148 | if (gradient_norm * alpha_ >= radius_) { |
| 149 | dogleg_step = (radius_ / gradient_norm) * gradient_; |
| 150 | dogleg_step_norm_ = radius_; |
| 151 | VLOG(3) << "Cauchy step size: " << dogleg_step_norm_ |
| 152 | << " radius: " << radius_; |
| 153 | return; |
| 154 | } |
| 155 | |
| 156 | // Case 3. The Cauchy point is inside the trust region and the |
| 157 | // Gauss-Newton step is outside. Compute the line joining the two |
| 158 | // points and the point on it which intersects the trust region |
| 159 | // boundary. |
| 160 | |
| 161 | // a = alpha * gradient |
| 162 | // b = gauss_newton_step |
| 163 | const double b_dot_a = alpha_ * gradient_.dot(gauss_newton_step_); |
| 164 | const double a_squared_norm = pow(alpha_ * gradient_norm, 2.0); |
| 165 | const double b_minus_a_squared_norm = |
| 166 | a_squared_norm - 2 * b_dot_a + pow(gauss_newton_norm, 2); |
| 167 | |
| 168 | // c = a' (b - a) |
| 169 | // = alpha * gradient' gauss_newton_step - alpha^2 |gradient|^2 |
| 170 | const double c = b_dot_a - a_squared_norm; |
| 171 | const double d = sqrt(c * c + b_minus_a_squared_norm * |
| 172 | (pow(radius_, 2.0) - a_squared_norm)); |
| 173 | |
| 174 | double beta = |
| 175 | (c <= 0) |
| 176 | ? (d - c) / b_minus_a_squared_norm |
| 177 | : (radius_ * radius_ - a_squared_norm) / (d + c); |
| 178 | dogleg_step = (alpha_ * (1.0 - beta)) * gradient_ + beta * gauss_newton_step_; |
| 179 | dogleg_step_norm_ = dogleg_step.norm(); |
| 180 | VLOG(3) << "Dogleg step size: " << dogleg_step_norm_ |
| 181 | << " radius: " << radius_; |
| 182 | } |
| 183 | |
| 184 | LinearSolver::Summary DoglegStrategy::ComputeGaussNewtonStep( |
| 185 | SparseMatrix* jacobian, |
| 186 | const double* residuals) { |
| 187 | const int n = jacobian->num_cols(); |
| 188 | LinearSolver::Summary linear_solver_summary; |
| 189 | linear_solver_summary.termination_type = FAILURE; |
| 190 | |
| 191 | // The Jacobian matrix is often quite poorly conditioned. Thus it is |
| 192 | // necessary to add a diagonal matrix at the bottom to prevent the |
| 193 | // linear solver from failing. |
| 194 | // |
| 195 | // We do this by computing the same diagonal matrix as the one used |
| 196 | // by Levenberg-Marquardt (other choices are possible), and scaling |
| 197 | // it by a small constant (independent of the trust region radius). |
| 198 | // |
| 199 | // If the solve fails, the multiplier to the diagonal is increased |
| 200 | // up to max_mu_ by a factor of mu_increase_factor_ every time. If |
| 201 | // the linear solver is still not successful, the strategy returns |
| 202 | // with FAILURE. |
| 203 | // |
| 204 | // Next time when a new Gauss-Newton step is requested, the |
| 205 | // multiplier starts out from the last successful solve. |
| 206 | // |
| 207 | // When a step is declared successful, the multiplier is decreased |
| 208 | // by half of mu_increase_factor_. |
| 209 | while (mu_ < max_mu_) { |
| 210 | // Dogleg, as far as I (sameeragarwal) understand it, requires a |
| 211 | // reasonably good estimate of the Gauss-Newton step. This means |
| 212 | // that we need to solve the normal equations more or less |
| 213 | // exactly. This is reflected in the values of the tolerances set |
| 214 | // below. |
| 215 | // |
| 216 | // For now, this strategy should only be used with exact |
| 217 | // factorization based solvers, for which these tolerances are |
| 218 | // automatically satisfied. |
| 219 | // |
| 220 | // The right way to combine inexact solves with trust region |
| 221 | // methods is to use Stiehaug's method. |
| 222 | LinearSolver::PerSolveOptions solve_options; |
| 223 | solve_options.q_tolerance = 0.0; |
| 224 | solve_options.r_tolerance = 0.0; |
| 225 | |
| 226 | lm_diagonal_ = (diagonal_ * mu_).array().sqrt(); |
| 227 | solve_options.D = lm_diagonal_.data(); |
| 228 | |
| 229 | InvalidateArray(n, gauss_newton_step_.data()); |
| 230 | linear_solver_summary = linear_solver_->Solve(jacobian, |
| 231 | residuals, |
| 232 | solve_options, |
| 233 | gauss_newton_step_.data()); |
| 234 | |
| 235 | if (linear_solver_summary.termination_type == FAILURE || |
| 236 | !IsArrayValid(n, gauss_newton_step_.data())) { |
| 237 | mu_ *= mu_increase_factor_; |
| 238 | VLOG(2) << "Increasing mu " << mu_; |
| 239 | linear_solver_summary.termination_type = FAILURE; |
| 240 | continue; |
| 241 | } |
| 242 | break; |
| 243 | } |
| 244 | |
| 245 | return linear_solver_summary; |
| 246 | } |
| 247 | |
| 248 | void DoglegStrategy::StepAccepted(double step_quality) { |
| 249 | CHECK_GT(step_quality, 0.0); |
| 250 | if (step_quality < decrease_threshold_) { |
| 251 | radius_ *= 0.5; |
| 252 | return; |
| 253 | } |
| 254 | |
| 255 | if (step_quality > increase_threshold_) { |
| 256 | radius_ = max(radius_, 3.0 * dogleg_step_norm_); |
| 257 | } |
| 258 | |
| 259 | // Reduce the regularization multiplier, in the hope that whatever |
| 260 | // was causing the rank deficiency has gone away and we can return |
| 261 | // to doing a pure Gauss-Newton solve. |
| 262 | mu_ = max(min_mu_, 2.0 * mu_ / mu_increase_factor_ ); |
| 263 | reuse_ = false; |
| 264 | } |
| 265 | |
| 266 | void DoglegStrategy::StepRejected(double step_quality) { |
| 267 | radius_ *= 0.5; |
| 268 | reuse_ = true; |
| 269 | } |
| 270 | |
| 271 | void DoglegStrategy::StepIsInvalid() { |
| 272 | mu_ *= mu_increase_factor_; |
| 273 | reuse_ = false; |
| 274 | } |
| 275 | |
| 276 | double DoglegStrategy::Radius() const { |
| 277 | return radius_; |
| 278 | } |
| 279 | |
| 280 | } // namespace internal |
| 281 | } // namespace ceres |