Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // keir@google.com (Keir Mierle) |
| 31 | |
| 32 | #ifndef CERES_INTERNAL_EVALUATOR_H_ |
| 33 | #define CERES_INTERNAL_EVALUATOR_H_ |
| 34 | |
| 35 | #include <string> |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame^] | 36 | #include <vector> |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 37 | #include "ceres/internal/port.h" |
| 38 | #include "ceres/types.h" |
| 39 | |
| 40 | namespace ceres { |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame^] | 41 | |
| 42 | class CRSMatrix; |
| 43 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 44 | namespace internal { |
| 45 | |
| 46 | class Program; |
| 47 | class SparseMatrix; |
| 48 | |
| 49 | // The Evaluator interface offers a way to interact with a least squares cost |
| 50 | // function that is useful for an optimizer that wants to minimize the least |
| 51 | // squares objective. This insulates the optimizer from issues like Jacobian |
| 52 | // storage, parameterization, etc. |
| 53 | class Evaluator { |
| 54 | public: |
| 55 | virtual ~Evaluator(); |
| 56 | |
| 57 | struct Options { |
| 58 | Options() |
| 59 | : num_threads(1), |
| 60 | num_eliminate_blocks(-1), |
| 61 | linear_solver_type(DENSE_QR) {} |
| 62 | |
| 63 | int num_threads; |
| 64 | int num_eliminate_blocks; |
| 65 | LinearSolverType linear_solver_type; |
| 66 | }; |
| 67 | |
| 68 | static Evaluator* Create(const Options& options, |
| 69 | Program* program, |
| 70 | string* error); |
| 71 | |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame^] | 72 | |
| 73 | // This is used for computing the cost, residual and Jacobian for |
| 74 | // returning to the user. For actually solving the optimization |
| 75 | // problem, the optimization algorithm uses the ProgramEvaluator |
| 76 | // objects directly. |
| 77 | // |
| 78 | // The residual, gradients and jacobian pointers can be NULL, in |
| 79 | // which case they will not be evaluated. cost cannot be NULL. |
| 80 | // |
| 81 | // The parallelism of the evaluator is controlled by num_threads; it |
| 82 | // should be at least 1. |
| 83 | // |
| 84 | // Note: That this function does not take a parameter vector as |
| 85 | // input. The parameter blocks are evaluated on the values contained |
| 86 | // in the arrays pointed to by their user_state pointers. |
| 87 | // |
| 88 | // Also worth noting is that this function mutates program by |
| 89 | // calling Program::SetParameterOffsetsAndIndex() on it so that an |
| 90 | // evaluator object can be constructed. |
| 91 | static bool Evaluate(Program* program, |
| 92 | int num_threads, |
| 93 | double* cost, |
| 94 | vector<double>* residuals, |
| 95 | vector<double>* gradient, |
| 96 | CRSMatrix* jacobian); |
| 97 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 98 | // Build and return a sparse matrix for storing and working with the Jacobian |
| 99 | // of the objective function. The jacobian has dimensions |
| 100 | // NumEffectiveParameters() by NumParameters(), and is typically extremely |
| 101 | // sparse. Since the sparsity pattern of the Jacobian remains constant over |
| 102 | // the lifetime of the optimization problem, this method is used to |
| 103 | // instantiate a SparseMatrix object with the appropriate sparsity structure |
| 104 | // (which can be an expensive operation) and then reused by the optimization |
| 105 | // algorithm and the various linear solvers. |
| 106 | // |
| 107 | // It is expected that the classes implementing this interface will be aware |
| 108 | // of their client's requirements for the kind of sparse matrix storage and |
| 109 | // layout that is needed for an efficient implementation. For example |
| 110 | // CompressedRowOptimizationProblem creates a compressed row representation of |
| 111 | // the jacobian for use with CHOLMOD, where as BlockOptimizationProblem |
| 112 | // creates a BlockSparseMatrix representation of the jacobian for use in the |
| 113 | // Schur complement based methods. |
| 114 | virtual SparseMatrix* CreateJacobian() const = 0; |
| 115 | |
| 116 | // Evaluate the cost function for the given state. Returns the cost, |
| 117 | // residuals, and jacobian in the corresponding arguments. Both residuals and |
| 118 | // jacobian are optional; to avoid computing them, pass NULL. |
| 119 | // |
| 120 | // If non-NULL, the Jacobian must have a suitable sparsity pattern; only the |
| 121 | // values array of the jacobian is modified. |
| 122 | // |
| 123 | // state is an array of size NumParameters(), cost is a pointer to a single |
| 124 | // double, and residuals is an array of doubles of size NumResiduals(). |
| 125 | virtual bool Evaluate(const double* state, |
| 126 | double* cost, |
| 127 | double* residuals, |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 128 | double* gradient, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 129 | SparseMatrix* jacobian) = 0; |
| 130 | |
| 131 | // Make a change delta (of size NumEffectiveParameters()) to state (of size |
| 132 | // NumParameters()) and store the result in state_plus_delta. |
| 133 | // |
| 134 | // In the case that there are no parameterizations used, this is equivalent to |
| 135 | // |
| 136 | // state_plus_delta[i] = state[i] + delta[i] ; |
| 137 | // |
| 138 | // however, the mapping is more complicated in the case of parameterizations |
| 139 | // like quaternions. This is the same as the "Plus()" operation in |
| 140 | // local_parameterization.h, but operating over the entire state vector for a |
| 141 | // problem. |
| 142 | virtual bool Plus(const double* state, |
| 143 | const double* delta, |
| 144 | double* state_plus_delta) const = 0; |
| 145 | |
| 146 | // The number of parameters in the optimization problem. |
| 147 | virtual int NumParameters() const = 0; |
| 148 | |
| 149 | // This is the effective number of parameters that the optimizer may adjust. |
| 150 | // This applies when there are parameterizations on some of the parameters. |
| 151 | virtual int NumEffectiveParameters() const = 0; |
| 152 | |
| 153 | // The number of residuals in the optimization problem. |
| 154 | virtual int NumResiduals() const = 0; |
| 155 | }; |
| 156 | |
| 157 | } // namespace internal |
| 158 | } // namespace ceres |
| 159 | |
| 160 | #endif // CERES_INTERNAL_EVALUATOR_H_ |