blob: faf440f35bde9803b7250696ccb610c371c53df4 [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "ceres/block_sparse_matrix.h"
32
33#include <string>
34#include <glog/logging.h>
35#include "gtest/gtest.h"
36#include "ceres/casts.h"
37#include "ceres/linear_least_squares_problems.h"
38#include "ceres/matrix_proto.h"
39#include "ceres/triplet_sparse_matrix.h"
40#include "ceres/internal/eigen.h"
41#include "ceres/internal/scoped_ptr.h"
42
43namespace ceres {
44namespace internal {
45
46class BlockSparseMatrixTest : public ::testing::Test {
47 protected :
48 virtual void SetUp() {
49 scoped_ptr<LinearLeastSquaresProblem> problem(
50 CreateLinearLeastSquaresProblemFromId(2));
51 CHECK_NOTNULL(problem.get());
52 A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
53
54 problem.reset(CreateLinearLeastSquaresProblemFromId(1));
55 CHECK_NOTNULL(problem.get());
56 B_.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));
57
58 CHECK_EQ(A_->num_rows(), B_->num_rows());
59 CHECK_EQ(A_->num_cols(), B_->num_cols());
60 CHECK_EQ(A_->num_nonzeros(), B_->num_nonzeros());
61 }
62
63 scoped_ptr<BlockSparseMatrix> A_;
64 scoped_ptr<TripletSparseMatrix> B_;
65};
66
67TEST_F(BlockSparseMatrixTest, SetZeroTest) {
68 A_->SetZero();
69 EXPECT_EQ(13, A_->num_nonzeros());
70}
71
72TEST_F(BlockSparseMatrixTest, RightMultiplyTest) {
73 Vector y_a = Vector::Zero(A_->num_rows());
74 Vector y_b = Vector::Zero(A_->num_rows());
75 for (int i = 0; i < A_->num_cols(); ++i) {
76 Vector x = Vector::Zero(A_->num_cols());
77 x[i] = 1.0;
78 A_->RightMultiply(x.data(), y_a.data());
79 B_->RightMultiply(x.data(), y_b.data());
80 EXPECT_LT((y_a - y_b).norm(), 1e-12);
81 }
82}
83
84TEST_F(BlockSparseMatrixTest, LeftMultiplyTest) {
85 Vector y_a = Vector::Zero(A_->num_cols());
86 Vector y_b = Vector::Zero(A_->num_cols());
87 for (int i = 0; i < A_->num_rows(); ++i) {
88 Vector x = Vector::Zero(A_->num_rows());
89 x[i] = 1.0;
90 A_->LeftMultiply(x.data(), y_a.data());
91 B_->LeftMultiply(x.data(), y_b.data());
92 EXPECT_LT((y_a - y_b).norm(), 1e-12);
93 }
94}
95
96TEST_F(BlockSparseMatrixTest, SquaredColumnNormTest) {
97 Vector y_a = Vector::Zero(A_->num_cols());
98 Vector y_b = Vector::Zero(A_->num_cols());
99 A_->SquaredColumnNorm(y_a.data());
100 B_->SquaredColumnNorm(y_b.data());
101 EXPECT_LT((y_a - y_b).norm(), 1e-12);
102}
103
104TEST_F(BlockSparseMatrixTest, ToDenseMatrixTest) {
105 Matrix m_a;
106 Matrix m_b;
107 A_->ToDenseMatrix(&m_a);
108 B_->ToDenseMatrix(&m_b);
109 EXPECT_LT((m_a - m_b).norm(), 1e-12);
110}
111
112#ifndef CERES_DONT_HAVE_PROTOCOL_BUFFERS
113TEST_F(BlockSparseMatrixTest, Serialization) {
114 // Roundtrip through serialization and check for equality.
115 SparseMatrixProto proto;
116 A_->ToProto(&proto);
117
118 LOG(INFO) << proto.DebugString();
119
120 BlockSparseMatrix A2(proto);
121
122 Matrix m_a;
123 Matrix m_b;
124 A_->ToDenseMatrix(&m_a);
125 A2.ToDenseMatrix(&m_b);
126
127 LOG(INFO) << "\n" << m_a;
128 LOG(INFO) << "\n" << m_b;
129
130 EXPECT_LT((m_a - m_b).norm(), 1e-12);
131}
132#endif
133
134} // namespace internal
135} // namespace ceres