Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | // |
| 31 | // Tests shared across evaluators. The tests try all combinations of linear |
| 32 | // solver and num_eliminate_blocks (for schur-based solvers). |
| 33 | |
| 34 | #include "ceres/evaluator.h" |
| 35 | |
| 36 | #include "gtest/gtest.h" |
| 37 | #include "ceres/casts.h" |
| 38 | #include "ceres/problem_impl.h" |
| 39 | #include "ceres/program.h" |
| 40 | #include "ceres/sparse_matrix.h" |
| 41 | #include "ceres/internal/scoped_ptr.h" |
| 42 | #include "ceres/local_parameterization.h" |
| 43 | #include "ceres/types.h" |
| 44 | #include "ceres/sized_cost_function.h" |
| 45 | #include "ceres/internal/eigen.h" |
| 46 | |
| 47 | namespace ceres { |
| 48 | namespace internal { |
| 49 | |
| 50 | // TODO(keir): Consider pushing this into a common test utils file. |
| 51 | template<int kFactor, int kNumResiduals, |
| 52 | int N0 = 0, int N1 = 0, int N2 = 0, bool kSucceeds = true> |
| 53 | class ParameterIgnoringCostFunction |
| 54 | : public SizedCostFunction<kNumResiduals, N0, N1, N2> { |
| 55 | typedef SizedCostFunction<kNumResiduals, N0, N1, N2> Base; |
| 56 | public: |
| 57 | virtual bool Evaluate(double const* const* parameters, |
| 58 | double* residuals, |
| 59 | double** jacobians) const { |
| 60 | for (int i = 0; i < Base::num_residuals(); ++i) { |
| 61 | residuals[i] = i + 1; |
| 62 | } |
| 63 | if (jacobians) { |
| 64 | for (int k = 0; k < Base::parameter_block_sizes().size(); ++k) { |
| 65 | // The jacobians here are full sized, but they are transformed in the |
| 66 | // evaluator into the "local" jacobian. In the tests, the "subset |
| 67 | // constant" parameterization is used, which should pick out columns |
| 68 | // from these jacobians. Put values in the jacobian that make this |
| 69 | // obvious; in particular, make the jacobians like this: |
| 70 | // |
| 71 | // 1 2 3 4 ... |
| 72 | // 1 2 3 4 ... .* kFactor |
| 73 | // 1 2 3 4 ... |
| 74 | // |
| 75 | // where the multiplication by kFactor makes it easier to distinguish |
| 76 | // between Jacobians of different residuals for the same parameter. |
| 77 | if (jacobians[k] != NULL) { |
| 78 | MatrixRef jacobian(jacobians[k], |
| 79 | Base::num_residuals(), |
| 80 | Base::parameter_block_sizes()[k]); |
| 81 | for (int j = 0; j < Base::parameter_block_sizes()[k]; ++j) { |
| 82 | jacobian.col(j).setConstant(kFactor * (j + 1)); |
| 83 | } |
| 84 | } |
| 85 | } |
| 86 | } |
| 87 | return kSucceeds; |
| 88 | } |
| 89 | }; |
| 90 | |
| 91 | struct EvaluatorTest |
| 92 | : public ::testing::TestWithParam<pair<LinearSolverType, int> > { |
| 93 | Evaluator* CreateEvaluator(Program* program) { |
| 94 | // This program is straight from the ProblemImpl, and so has no index/offset |
| 95 | // yet; compute it here as required by the evalutor implementations. |
| 96 | program->SetParameterOffsetsAndIndex(); |
| 97 | |
| 98 | VLOG(1) << "Creating evaluator with type: " << GetParam().first |
| 99 | << " and num_eliminate_blocks: " << GetParam().second; |
| 100 | Evaluator::Options options; |
| 101 | options.linear_solver_type = GetParam().first; |
| 102 | options.num_eliminate_blocks = GetParam().second; |
| 103 | string error; |
| 104 | return Evaluator::Create(options, program, &error); |
| 105 | } |
| 106 | }; |
| 107 | |
| 108 | void SetSparseMatrixConstant(SparseMatrix* sparse_matrix, double value) { |
| 109 | VectorRef(sparse_matrix->mutable_values(), |
| 110 | sparse_matrix->num_nonzeros()).setConstant(value); |
| 111 | } |
| 112 | |
| 113 | TEST_P(EvaluatorTest, SingleResidualProblem) { |
| 114 | ProblemImpl problem; |
| 115 | |
| 116 | // The values are ignored completely by the cost function. |
| 117 | double x[2]; |
| 118 | double y[3]; |
| 119 | double z[4]; |
| 120 | double state[9]; |
| 121 | |
| 122 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>, |
| 123 | NULL, |
| 124 | x, y, z); |
| 125 | |
| 126 | scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); |
| 127 | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 128 | ASSERT_EQ(3, jacobian->num_rows()); |
| 129 | ASSERT_EQ(9, jacobian->num_cols()); |
| 130 | |
| 131 | // Cost only; no residuals and no jacobian. |
| 132 | { |
| 133 | double cost = -1; |
| 134 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); |
| 135 | EXPECT_EQ(7.0, cost); |
| 136 | } |
| 137 | |
| 138 | // Cost and residuals, no jacobian. |
| 139 | { |
| 140 | double cost = -1; |
| 141 | double residuals[3] = { -2, -2, -2 }; |
| 142 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); |
| 143 | EXPECT_EQ(7.0, cost); |
| 144 | EXPECT_EQ(1.0, residuals[0]); |
| 145 | EXPECT_EQ(2.0, residuals[1]); |
| 146 | EXPECT_EQ(3.0, residuals[2]); |
| 147 | } |
| 148 | |
| 149 | // Cost, residuals, and jacobian. |
| 150 | { |
| 151 | double cost = -1; |
| 152 | double residuals[3] = { -2, -2, -2 }; |
| 153 | SetSparseMatrixConstant(jacobian.get(), -1); |
| 154 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); |
| 155 | EXPECT_EQ(7.0, cost); |
| 156 | EXPECT_EQ(1.0, residuals[0]); |
| 157 | EXPECT_EQ(2.0, residuals[1]); |
| 158 | EXPECT_EQ(3.0, residuals[2]); |
| 159 | |
| 160 | Matrix actual_jacobian; |
| 161 | jacobian->ToDenseMatrix(&actual_jacobian); |
| 162 | |
| 163 | Matrix expected_jacobian(3, 9); |
| 164 | expected_jacobian |
| 165 | // x y z |
| 166 | << 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 167 | 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 168 | 1, 2, 1, 2, 3, 1, 2, 3, 4; |
| 169 | |
| 170 | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) |
| 171 | << "Actual:\n" << actual_jacobian |
| 172 | << "\nExpected:\n" << expected_jacobian; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | TEST_P(EvaluatorTest, SingleResidualProblemWithPermutedParameters) { |
| 177 | ProblemImpl problem; |
| 178 | |
| 179 | // The values are ignored completely by the cost function. |
| 180 | double x[2]; |
| 181 | double y[3]; |
| 182 | double z[4]; |
| 183 | double state[9]; |
| 184 | |
| 185 | // Add the parameters in explicit order to force the ordering in the program. |
| 186 | problem.AddParameterBlock(x, 2); |
| 187 | problem.AddParameterBlock(y, 3); |
| 188 | problem.AddParameterBlock(z, 4); |
| 189 | |
| 190 | // Then use a cost function which is similar to the others, but swap around |
| 191 | // the ordering of the parameters to the cost function. This shouldn't affect |
| 192 | // the jacobian evaluation, but requires explicit handling in the evaluators. |
| 193 | // At one point the compressed row evaluator had a bug that went undetected |
| 194 | // for a long time, since by chance most users added parameters to the problem |
| 195 | // in the same order that they occured as parameters to a cost function. |
| 196 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 4, 3, 2>, |
| 197 | NULL, |
| 198 | z, y, x); |
| 199 | |
| 200 | scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); |
| 201 | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 202 | ASSERT_EQ(3, jacobian->num_rows()); |
| 203 | ASSERT_EQ(9, jacobian->num_cols()); |
| 204 | |
| 205 | // Cost only; no residuals and no jacobian. |
| 206 | { |
| 207 | double cost = -1; |
| 208 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); |
| 209 | EXPECT_EQ(7.0, cost); |
| 210 | } |
| 211 | |
| 212 | // Cost and residuals, no jacobian. |
| 213 | { |
| 214 | double cost = -1; |
| 215 | double residuals[3] = { -2, -2, -2 }; |
| 216 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); |
| 217 | EXPECT_EQ(7.0, cost); |
| 218 | EXPECT_EQ(1.0, residuals[0]); |
| 219 | EXPECT_EQ(2.0, residuals[1]); |
| 220 | EXPECT_EQ(3.0, residuals[2]); |
| 221 | } |
| 222 | |
| 223 | // Cost, residuals, and jacobian. |
| 224 | { |
| 225 | double cost = -1; |
| 226 | double residuals[3] = { -2, -2, -2 }; |
| 227 | SetSparseMatrixConstant(jacobian.get(), -1); |
| 228 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); |
| 229 | EXPECT_EQ(7.0, cost); |
| 230 | EXPECT_EQ(1.0, residuals[0]); |
| 231 | EXPECT_EQ(2.0, residuals[1]); |
| 232 | EXPECT_EQ(3.0, residuals[2]); |
| 233 | |
| 234 | Matrix actual_jacobian; |
| 235 | jacobian->ToDenseMatrix(&actual_jacobian); |
| 236 | |
| 237 | Matrix expected_jacobian(3, 9); |
| 238 | expected_jacobian |
| 239 | // x y z |
| 240 | << 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 241 | 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 242 | 1, 2, 1, 2, 3, 1, 2, 3, 4; |
| 243 | |
| 244 | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) |
| 245 | << "Actual:\n" << actual_jacobian |
| 246 | << "\nExpected:\n" << expected_jacobian; |
| 247 | } |
| 248 | } |
| 249 | TEST_P(EvaluatorTest, SingleResidualProblemWithNuisanceParameters) { |
| 250 | ProblemImpl problem; |
| 251 | |
| 252 | // The values are ignored completely by the cost function. |
| 253 | double x[2]; |
| 254 | double y[3]; |
| 255 | double z[4]; |
| 256 | double state[9]; |
| 257 | |
| 258 | // These parameters are not used. |
| 259 | double w1[2]; |
| 260 | double w2[1]; |
| 261 | double w3[1]; |
| 262 | double w4[3]; |
| 263 | |
| 264 | // Add the parameters in a mixed order so the Jacobian is "checkered" with the |
| 265 | // values from the other parameters. |
| 266 | problem.AddParameterBlock(w1, 2); |
| 267 | problem.AddParameterBlock(x, 2); |
| 268 | problem.AddParameterBlock(w2, 1); |
| 269 | problem.AddParameterBlock(y, 3); |
| 270 | problem.AddParameterBlock(w3, 1); |
| 271 | problem.AddParameterBlock(z, 4); |
| 272 | problem.AddParameterBlock(w4, 3); |
| 273 | |
| 274 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>, |
| 275 | NULL, |
| 276 | x, y, z); |
| 277 | |
| 278 | scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); |
| 279 | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 280 | ASSERT_EQ(3, jacobian->num_rows()); |
| 281 | ASSERT_EQ(16, jacobian->num_cols()); |
| 282 | |
| 283 | // Cost only; no residuals and no jacobian. |
| 284 | { |
| 285 | double cost = -1; |
| 286 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); |
| 287 | EXPECT_EQ(7.0, cost); |
| 288 | } |
| 289 | |
| 290 | // Cost and residuals, no jacobian. |
| 291 | { |
| 292 | double cost = -1; |
| 293 | double residuals[3] = { -2, -2, -2 }; |
| 294 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); |
| 295 | EXPECT_EQ(7.0, cost); |
| 296 | EXPECT_EQ(1.0, residuals[0]); |
| 297 | EXPECT_EQ(2.0, residuals[1]); |
| 298 | EXPECT_EQ(3.0, residuals[2]); |
| 299 | } |
| 300 | |
| 301 | // Cost, residuals, and jacobian. |
| 302 | { |
| 303 | double cost = -1; |
| 304 | double residuals[3] = { -2, -2, -2 }; |
| 305 | SetSparseMatrixConstant(jacobian.get(), -1); |
| 306 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); |
| 307 | EXPECT_EQ(7.0, cost); |
| 308 | EXPECT_EQ(1.0, residuals[0]); |
| 309 | EXPECT_EQ(2.0, residuals[1]); |
| 310 | EXPECT_EQ(3.0, residuals[2]); |
| 311 | |
| 312 | Matrix actual_jacobian; |
| 313 | jacobian->ToDenseMatrix(&actual_jacobian); |
| 314 | |
| 315 | Matrix expected_jacobian(3, 16); |
| 316 | expected_jacobian |
| 317 | // w1 x w2 y w2 z w3 |
| 318 | << 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0, |
| 319 | 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0, |
| 320 | 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0; |
| 321 | |
| 322 | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) |
| 323 | << "Actual:\n" << actual_jacobian |
| 324 | << "\nExpected:\n" << expected_jacobian; |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | TEST_P(EvaluatorTest, MultipleResidualProblem) { |
| 329 | ProblemImpl problem; |
| 330 | |
| 331 | // The values are ignored completely by the cost function. |
| 332 | double x[2]; |
| 333 | double y[3]; |
| 334 | double z[4]; |
| 335 | double state[9]; |
| 336 | |
| 337 | // Add the parameters in explicit order to force the ordering in the program. |
| 338 | problem.AddParameterBlock(x, 2); |
| 339 | problem.AddParameterBlock(y, 3); |
| 340 | problem.AddParameterBlock(z, 4); |
| 341 | |
| 342 | // f(x, y) in R^2 |
| 343 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>, |
| 344 | NULL, |
| 345 | x, y); |
| 346 | |
| 347 | // g(x, z) in R^3 |
| 348 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>, |
| 349 | NULL, |
| 350 | x, z); |
| 351 | |
| 352 | // h(y, z) in R^4 |
| 353 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>, |
| 354 | NULL, |
| 355 | y, z); |
| 356 | |
| 357 | scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); |
| 358 | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 359 | ASSERT_EQ(9, jacobian->num_rows()); |
| 360 | ASSERT_EQ(9, jacobian->num_cols()); |
| 361 | |
| 362 | // f g h |
| 363 | double expected_cost = (1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0; |
| 364 | |
| 365 | |
| 366 | // Cost only; no residuals and no jacobian. |
| 367 | { |
| 368 | double cost = -1; |
| 369 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); |
| 370 | EXPECT_EQ(expected_cost, cost); |
| 371 | } |
| 372 | |
| 373 | // Cost and residuals, no jacobian. |
| 374 | { |
| 375 | double cost = -1; |
| 376 | double residuals[9] = { -2, -2, -2, -2, -2, -2, -2, -2, -2 }; |
| 377 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); |
| 378 | EXPECT_EQ(expected_cost, cost); |
| 379 | EXPECT_EQ(1.0, residuals[0]); |
| 380 | EXPECT_EQ(2.0, residuals[1]); |
| 381 | EXPECT_EQ(1.0, residuals[2]); |
| 382 | EXPECT_EQ(2.0, residuals[3]); |
| 383 | EXPECT_EQ(3.0, residuals[4]); |
| 384 | EXPECT_EQ(1.0, residuals[5]); |
| 385 | EXPECT_EQ(2.0, residuals[6]); |
| 386 | EXPECT_EQ(3.0, residuals[7]); |
| 387 | EXPECT_EQ(4.0, residuals[8]); |
| 388 | } |
| 389 | |
| 390 | // Cost, residuals, and jacobian. |
| 391 | { |
| 392 | double cost = -1; |
| 393 | double residuals[9] = { -2, -2, -2, -2, -2, -2, -2, -2, -2 }; |
| 394 | SetSparseMatrixConstant(jacobian.get(), -1); |
| 395 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); |
| 396 | EXPECT_EQ(expected_cost, cost); |
| 397 | EXPECT_EQ(1.0, residuals[0]); |
| 398 | EXPECT_EQ(2.0, residuals[1]); |
| 399 | EXPECT_EQ(1.0, residuals[2]); |
| 400 | EXPECT_EQ(2.0, residuals[3]); |
| 401 | EXPECT_EQ(3.0, residuals[4]); |
| 402 | EXPECT_EQ(1.0, residuals[5]); |
| 403 | EXPECT_EQ(2.0, residuals[6]); |
| 404 | EXPECT_EQ(3.0, residuals[7]); |
| 405 | EXPECT_EQ(4.0, residuals[8]); |
| 406 | |
| 407 | Matrix actual_jacobian; |
| 408 | jacobian->ToDenseMatrix(&actual_jacobian); |
| 409 | |
| 410 | Matrix expected_jacobian(9, 9); |
| 411 | expected_jacobian << |
| 412 | // x y z |
| 413 | /* f(x, y) */ 1, 2, 1, 2, 3, 0, 0, 0, 0, |
| 414 | 1, 2, 1, 2, 3, 0, 0, 0, 0, |
| 415 | |
| 416 | /* g(x, z) */ 2, 4, 0, 0, 0, 2, 4, 6, 8, |
| 417 | 2, 4, 0, 0, 0, 2, 4, 6, 8, |
| 418 | 2, 4, 0, 0, 0, 2, 4, 6, 8, |
| 419 | |
| 420 | /* h(y, z) */ 0, 0, 3, 6, 9, 3, 6, 9, 12, |
| 421 | 0, 0, 3, 6, 9, 3, 6, 9, 12, |
| 422 | 0, 0, 3, 6, 9, 3, 6, 9, 12, |
| 423 | 0, 0, 3, 6, 9, 3, 6, 9, 12; |
| 424 | |
| 425 | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) |
| 426 | << "Actual:\n" << actual_jacobian |
| 427 | << "\nExpected:\n" << expected_jacobian; |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | TEST_P(EvaluatorTest, MultipleResidualsWithLocalParameterizations) { |
| 432 | ProblemImpl problem; |
| 433 | |
| 434 | // The values are ignored completely by the cost function. |
| 435 | double x[2]; |
| 436 | double y[3]; |
| 437 | double z[4]; |
| 438 | double state[9]; |
| 439 | |
| 440 | // Add the parameters in explicit order to force the ordering in the program. |
| 441 | problem.AddParameterBlock(x, 2); |
| 442 | |
| 443 | // Fix y's first dimension. |
| 444 | vector<int> y_fixed; |
| 445 | y_fixed.push_back(0); |
| 446 | problem.AddParameterBlock(y, 3, new SubsetParameterization(3, y_fixed)); |
| 447 | |
| 448 | // Fix z's second dimension. |
| 449 | vector<int> z_fixed; |
| 450 | z_fixed.push_back(1); |
| 451 | problem.AddParameterBlock(z, 4, new SubsetParameterization(4, z_fixed)); |
| 452 | |
| 453 | // f(x, y) in R^2 |
| 454 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>, |
| 455 | NULL, |
| 456 | x, y); |
| 457 | |
| 458 | // g(x, z) in R^3 |
| 459 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>, |
| 460 | NULL, |
| 461 | x, z); |
| 462 | |
| 463 | // h(y, z) in R^4 |
| 464 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>, |
| 465 | NULL, |
| 466 | y, z); |
| 467 | |
| 468 | scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); |
| 469 | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 470 | ASSERT_EQ(9, jacobian->num_rows()); |
| 471 | ASSERT_EQ(7, jacobian->num_cols()); |
| 472 | |
| 473 | // f g h |
| 474 | double expected_cost = (1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0; |
| 475 | |
| 476 | |
| 477 | // Cost only; no residuals and no jacobian. |
| 478 | { |
| 479 | double cost = -1; |
| 480 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); |
| 481 | EXPECT_EQ(expected_cost, cost); |
| 482 | } |
| 483 | |
| 484 | // Cost and residuals, no jacobian. |
| 485 | { |
| 486 | double cost = -1; |
| 487 | double residuals[9] = { -2, -2, -2, -2, -2, -2, -2, -2, -2 }; |
| 488 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); |
| 489 | EXPECT_EQ(expected_cost, cost); |
| 490 | EXPECT_EQ(1.0, residuals[0]); |
| 491 | EXPECT_EQ(2.0, residuals[1]); |
| 492 | EXPECT_EQ(1.0, residuals[2]); |
| 493 | EXPECT_EQ(2.0, residuals[3]); |
| 494 | EXPECT_EQ(3.0, residuals[4]); |
| 495 | EXPECT_EQ(1.0, residuals[5]); |
| 496 | EXPECT_EQ(2.0, residuals[6]); |
| 497 | EXPECT_EQ(3.0, residuals[7]); |
| 498 | EXPECT_EQ(4.0, residuals[8]); |
| 499 | } |
| 500 | |
| 501 | // Cost, residuals, and jacobian. |
| 502 | { |
| 503 | double cost = -1; |
| 504 | double residuals[9] = { -2, -2, -2, -2, -2, -2, -2, -2, -2 }; |
| 505 | SetSparseMatrixConstant(jacobian.get(), -1); |
| 506 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); |
| 507 | EXPECT_EQ(expected_cost, cost); |
| 508 | EXPECT_EQ(1.0, residuals[0]); |
| 509 | EXPECT_EQ(2.0, residuals[1]); |
| 510 | EXPECT_EQ(1.0, residuals[2]); |
| 511 | EXPECT_EQ(2.0, residuals[3]); |
| 512 | EXPECT_EQ(3.0, residuals[4]); |
| 513 | EXPECT_EQ(1.0, residuals[5]); |
| 514 | EXPECT_EQ(2.0, residuals[6]); |
| 515 | EXPECT_EQ(3.0, residuals[7]); |
| 516 | EXPECT_EQ(4.0, residuals[8]); |
| 517 | |
| 518 | Matrix actual_jacobian; |
| 519 | jacobian->ToDenseMatrix(&actual_jacobian); |
| 520 | |
| 521 | // Note y and z are missing columns due to the subset parameterization. |
| 522 | Matrix expected_jacobian(9, 7); |
| 523 | expected_jacobian << |
| 524 | // x y z |
| 525 | /* f(x, y) */ 1, 2, 2, 3, 0, 0, 0, |
| 526 | 1, 2, 2, 3, 0, 0, 0, |
| 527 | |
| 528 | /* g(x, z) */ 2, 4, 0, 0, 2, 6, 8, |
| 529 | 2, 4, 0, 0, 2, 6, 8, |
| 530 | 2, 4, 0, 0, 2, 6, 8, |
| 531 | |
| 532 | /* h(y, z) */ 0, 0, 6, 9, 3, 9, 12, |
| 533 | 0, 0, 6, 9, 3, 9, 12, |
| 534 | 0, 0, 6, 9, 3, 9, 12, |
| 535 | 0, 0, 6, 9, 3, 9, 12; |
| 536 | |
| 537 | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) |
| 538 | << "Actual:\n" << actual_jacobian |
| 539 | << "\nExpected:\n" << expected_jacobian; |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | TEST_P(EvaluatorTest, MultipleResidualProblemWithSomeConstantParameters) { |
| 544 | ProblemImpl problem; |
| 545 | |
| 546 | // The values are ignored completely by the cost function. |
| 547 | double x[2]; |
| 548 | double y[3]; |
| 549 | double z[4]; |
| 550 | double state[9]; |
| 551 | |
| 552 | // Add the parameters in explicit order to force the ordering in the program. |
| 553 | problem.AddParameterBlock(x, 2); |
| 554 | problem.AddParameterBlock(y, 3); |
| 555 | problem.AddParameterBlock(z, 4); |
| 556 | |
| 557 | // f(x, y) in R^2 |
| 558 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>, |
| 559 | NULL, |
| 560 | x, y); |
| 561 | |
| 562 | // g(x, z) in R^3 |
| 563 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>, |
| 564 | NULL, |
| 565 | x, z); |
| 566 | |
| 567 | // h(y, z) in R^4 |
| 568 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>, |
| 569 | NULL, |
| 570 | y, z); |
| 571 | |
| 572 | // For this test, "z" is constant. |
| 573 | problem.SetParameterBlockConstant(z); |
| 574 | |
| 575 | // Create the reduced program which is missing the fixed "z" variable. |
| 576 | // Normally, the preprocessing of the program that happens in solver_impl |
| 577 | // takes care of this, but we don't want to invoke the solver here. |
| 578 | Program reduced_program; |
| 579 | *reduced_program.mutable_residual_blocks() = |
| 580 | problem.program().residual_blocks(); |
| 581 | *reduced_program.mutable_parameter_blocks() = |
| 582 | problem.program().parameter_blocks(); |
| 583 | |
| 584 | // "z" is the last parameter; pop it off. |
| 585 | reduced_program.mutable_parameter_blocks()->pop_back(); |
| 586 | |
| 587 | scoped_ptr<Evaluator> evaluator(CreateEvaluator(&reduced_program)); |
| 588 | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 589 | ASSERT_EQ(9, jacobian->num_rows()); |
| 590 | ASSERT_EQ(5, jacobian->num_cols()); |
| 591 | |
| 592 | // f g h |
| 593 | double expected_cost = (1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0; |
| 594 | |
| 595 | |
| 596 | // Cost only; no residuals and no jacobian. |
| 597 | { |
| 598 | double cost = -1; |
| 599 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); |
| 600 | EXPECT_EQ(expected_cost, cost); |
| 601 | } |
| 602 | |
| 603 | // Cost and residuals, no jacobian. |
| 604 | { |
| 605 | double cost = -1; |
| 606 | double residuals[9] = { -2, -2, -2, -2, -2, -2, -2, -2, -2 }; |
| 607 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); |
| 608 | EXPECT_EQ(expected_cost, cost); |
| 609 | EXPECT_EQ(1.0, residuals[0]); |
| 610 | EXPECT_EQ(2.0, residuals[1]); |
| 611 | EXPECT_EQ(1.0, residuals[2]); |
| 612 | EXPECT_EQ(2.0, residuals[3]); |
| 613 | EXPECT_EQ(3.0, residuals[4]); |
| 614 | EXPECT_EQ(1.0, residuals[5]); |
| 615 | EXPECT_EQ(2.0, residuals[6]); |
| 616 | EXPECT_EQ(3.0, residuals[7]); |
| 617 | EXPECT_EQ(4.0, residuals[8]); |
| 618 | } |
| 619 | |
| 620 | // Cost, residuals, and jacobian. |
| 621 | { |
| 622 | double cost = -1; |
| 623 | double residuals[9] = { -2, -2, -2, -2, -2, -2, -2, -2, -2 }; |
| 624 | SetSparseMatrixConstant(jacobian.get(), -1); |
| 625 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); |
| 626 | EXPECT_EQ(expected_cost, cost); |
| 627 | EXPECT_EQ(1.0, residuals[0]); |
| 628 | EXPECT_EQ(2.0, residuals[1]); |
| 629 | EXPECT_EQ(1.0, residuals[2]); |
| 630 | EXPECT_EQ(2.0, residuals[3]); |
| 631 | EXPECT_EQ(3.0, residuals[4]); |
| 632 | EXPECT_EQ(1.0, residuals[5]); |
| 633 | EXPECT_EQ(2.0, residuals[6]); |
| 634 | EXPECT_EQ(3.0, residuals[7]); |
| 635 | EXPECT_EQ(4.0, residuals[8]); |
| 636 | |
| 637 | Matrix actual_jacobian; |
| 638 | jacobian->ToDenseMatrix(&actual_jacobian); |
| 639 | |
| 640 | Matrix expected_jacobian(9, 5); |
| 641 | expected_jacobian << |
| 642 | // x y |
| 643 | /* f(x, y) */ 1, 2, 1, 2, 3, |
| 644 | 1, 2, 1, 2, 3, |
| 645 | |
| 646 | /* g(x, z) */ 2, 4, 0, 0, 0, |
| 647 | 2, 4, 0, 0, 0, |
| 648 | 2, 4, 0, 0, 0, |
| 649 | |
| 650 | /* h(y, z) */ 0, 0, 3, 6, 9, |
| 651 | 0, 0, 3, 6, 9, |
| 652 | 0, 0, 3, 6, 9, |
| 653 | 0, 0, 3, 6, 9; |
| 654 | |
| 655 | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) |
| 656 | << "Actual:\n" << actual_jacobian |
| 657 | << "\nExpected:\n" << expected_jacobian; |
| 658 | } |
| 659 | } |
| 660 | |
| 661 | TEST_P(EvaluatorTest, EvaluatorAbortsForResidualsThatFailToEvaluate) { |
| 662 | ProblemImpl problem; |
| 663 | |
| 664 | // The values are ignored completely by the cost function. |
| 665 | double x[2]; |
| 666 | double y[3]; |
| 667 | double z[4]; |
| 668 | double state[9]; |
| 669 | |
| 670 | // Switch the return value to failure. |
| 671 | problem.AddResidualBlock( |
| 672 | new ParameterIgnoringCostFunction<20, 3, 2, 3, 4, false>, NULL, x, y, z); |
| 673 | |
| 674 | scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); |
| 675 | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 676 | double cost; |
| 677 | EXPECT_FALSE(evaluator->Evaluate(state, &cost, NULL, NULL)); |
| 678 | } |
| 679 | |
| 680 | // In the pairs, the first argument is the linear solver type, and the second |
| 681 | // argument is num_eliminate_blocks. Changing the num_eliminate_blocks only |
| 682 | // makes sense for the schur-based solvers. |
| 683 | // |
| 684 | // Try all values of num_eliminate_blocks that make sense given that in the |
| 685 | // tests a maximum of 4 parameter blocks are present. |
| 686 | INSTANTIATE_TEST_CASE_P( |
| 687 | LinearSolvers, |
| 688 | EvaluatorTest, |
| 689 | ::testing::Values(make_pair(DENSE_QR, 0), |
| 690 | make_pair(DENSE_SCHUR, 0), |
| 691 | make_pair(DENSE_SCHUR, 1), |
| 692 | make_pair(DENSE_SCHUR, 2), |
| 693 | make_pair(DENSE_SCHUR, 3), |
| 694 | make_pair(DENSE_SCHUR, 4), |
| 695 | make_pair(SPARSE_SCHUR, 0), |
| 696 | make_pair(SPARSE_SCHUR, 1), |
| 697 | make_pair(SPARSE_SCHUR, 2), |
| 698 | make_pair(SPARSE_SCHUR, 3), |
| 699 | make_pair(SPARSE_SCHUR, 4), |
| 700 | make_pair(ITERATIVE_SCHUR, 0), |
| 701 | make_pair(ITERATIVE_SCHUR, 1), |
| 702 | make_pair(ITERATIVE_SCHUR, 2), |
| 703 | make_pair(ITERATIVE_SCHUR, 3), |
| 704 | make_pair(ITERATIVE_SCHUR, 4), |
| 705 | make_pair(SPARSE_NORMAL_CHOLESKY, 0))); |
| 706 | |
| 707 | // Simple cost function used to check if the evaluator is sensitive to |
| 708 | // state changes. |
| 709 | class ParameterSensitiveCostFunction : public SizedCostFunction<2, 2> { |
| 710 | public: |
| 711 | virtual bool Evaluate(double const* const* parameters, |
| 712 | double* residuals, |
| 713 | double** jacobians) const { |
| 714 | double x1 = parameters[0][0]; |
| 715 | double x2 = parameters[0][1]; |
| 716 | residuals[0] = x1 * x1; |
| 717 | residuals[1] = x2 * x2; |
| 718 | |
| 719 | if (jacobians != NULL) { |
| 720 | double* jacobian = jacobians[0]; |
| 721 | if (jacobian != NULL) { |
| 722 | jacobian[0] = 2.0 * x1; |
| 723 | jacobian[1] = 0.0; |
| 724 | jacobian[2] = 0.0; |
| 725 | jacobian[3] = 2.0 * x2; |
| 726 | } |
| 727 | } |
| 728 | return true; |
| 729 | } |
| 730 | }; |
| 731 | |
| 732 | TEST(Evaluator, EvaluatorRespectsParameterChanges) { |
| 733 | ProblemImpl problem; |
| 734 | |
| 735 | double x[2]; |
| 736 | x[0] = 1.0; |
| 737 | x[1] = 1.0; |
| 738 | |
| 739 | problem.AddResidualBlock(new ParameterSensitiveCostFunction(), NULL, x); |
| 740 | Program* program = problem.mutable_program(); |
| 741 | program->SetParameterOffsetsAndIndex(); |
| 742 | |
| 743 | Evaluator::Options options; |
| 744 | options.linear_solver_type = DENSE_QR; |
| 745 | options.num_eliminate_blocks = 0; |
| 746 | string error; |
| 747 | scoped_ptr<Evaluator> evaluator(Evaluator::Create(options, program, &error)); |
| 748 | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 749 | |
| 750 | ASSERT_EQ(2, jacobian->num_rows()); |
| 751 | ASSERT_EQ(2, jacobian->num_cols()); |
| 752 | |
| 753 | double state[2]; |
| 754 | state[0] = 2.0; |
| 755 | state[1] = 3.0; |
| 756 | |
| 757 | // The original state of a residual block comes from the user's |
| 758 | // state. So the original state is 1.0, 1.0, and the only way we get |
| 759 | // the 2.0, 3.0 results in the following tests is if it respects the |
| 760 | // values in the state vector. |
| 761 | |
| 762 | // Cost only; no residuals and no jacobian. |
| 763 | { |
| 764 | double cost = -1; |
| 765 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); |
| 766 | EXPECT_EQ(48.5, cost); |
| 767 | } |
| 768 | |
| 769 | // Cost and residuals, no jacobian. |
| 770 | { |
| 771 | double cost = -1; |
| 772 | double residuals[2] = { -2, -2 }; |
| 773 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); |
| 774 | EXPECT_EQ(48.5, cost); |
| 775 | EXPECT_EQ(4, residuals[0]); |
| 776 | EXPECT_EQ(9, residuals[1]); |
| 777 | } |
| 778 | |
| 779 | // Cost, residuals, and jacobian. |
| 780 | { |
| 781 | double cost = -1; |
| 782 | double residuals[2] = { -2, -2}; |
| 783 | SetSparseMatrixConstant(jacobian.get(), -1); |
| 784 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); |
| 785 | EXPECT_EQ(48.5, cost); |
| 786 | EXPECT_EQ(4, residuals[0]); |
| 787 | EXPECT_EQ(9, residuals[1]); |
| 788 | Matrix actual_jacobian; |
| 789 | jacobian->ToDenseMatrix(&actual_jacobian); |
| 790 | |
| 791 | Matrix expected_jacobian(2, 2); |
| 792 | expected_jacobian |
| 793 | << 2 * state[0], 0, |
| 794 | 0, 2 * state[1]; |
| 795 | |
| 796 | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) |
| 797 | << "Actual:\n" << actual_jacobian |
| 798 | << "\nExpected:\n" << expected_jacobian; |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | } // namespace internal |
| 803 | } // namespace ceres |