Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | // sameeragarwal@google.com (Sameer Agarwal) |
| 31 | |
| 32 | #ifndef CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_ |
| 33 | #define CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_ |
| 34 | |
| 35 | #include <vector> |
| 36 | #include "ceres/internal/port.h" |
| 37 | |
| 38 | namespace ceres { |
| 39 | |
| 40 | // Purpose: Sometimes parameter blocks x can overparameterize a problem |
| 41 | // |
| 42 | // min f(x) |
| 43 | // x |
| 44 | // |
| 45 | // In that case it is desirable to choose a parameterization for the |
| 46 | // block itself to remove the null directions of the cost. More |
| 47 | // generally, if x lies on a manifold of a smaller dimension than the |
| 48 | // ambient space that it is embedded in, then it is numerically and |
| 49 | // computationally more effective to optimize it using a |
| 50 | // parameterization that lives in the tangent space of that manifold |
| 51 | // at each point. |
| 52 | // |
| 53 | // For example, a sphere in three dimensions is a 2 dimensional |
| 54 | // manifold, embedded in a three dimensional space. At each point on |
| 55 | // the sphere, the plane tangent to it defines a two dimensional |
| 56 | // tangent space. For a cost function defined on this sphere, given a |
| 57 | // point x, moving in the direction normal to the sphere at that point |
| 58 | // is not useful. Thus a better way to do a local optimization is to |
| 59 | // optimize over two dimensional vector delta in the tangent space at |
| 60 | // that point and then "move" to the point x + delta, where the move |
| 61 | // operation involves projecting back onto the sphere. Doing so |
| 62 | // removes a redundent dimension from the optimization, making it |
| 63 | // numerically more robust and efficient. |
| 64 | // |
| 65 | // More generally we can define a function |
| 66 | // |
| 67 | // x_plus_delta = Plus(x, delta), |
| 68 | // |
| 69 | // where x_plus_delta has the same size as x, and delta is of size |
| 70 | // less than or equal to x. The function Plus, generalizes the |
| 71 | // definition of vector addition. Thus it satisfies the identify |
| 72 | // |
| 73 | // Plus(x, 0) = x, for all x. |
| 74 | // |
| 75 | // A trivial version of Plus is when delta is of the same size as x |
| 76 | // and |
| 77 | // |
| 78 | // Plus(x, delta) = x + delta |
| 79 | // |
| 80 | // A more interesting case if x is two dimensional vector, and the |
| 81 | // user wishes to hold the first coordinate constant. Then, delta is a |
| 82 | // scalar and Plus is defined as |
| 83 | // |
| 84 | // Plus(x, delta) = x + [0] * delta |
| 85 | // [1] |
| 86 | // |
| 87 | // An example that occurs commonly in Structure from Motion problems |
| 88 | // is when camera rotations are parameterized using Quaternion. There, |
| 89 | // it is useful only make updates orthogonal to that 4-vector defining |
| 90 | // the quaternion. One way to do this is to let delta be a 3 |
| 91 | // dimensional vector and define Plus to be |
| 92 | // |
| 93 | // Plus(x, delta) = [cos(|delta|), sin(|delta|) delta / |delta|] * x |
| 94 | // |
| 95 | // The multiplication between the two 4-vectors on the RHS is the |
| 96 | // standard quaternion product. |
| 97 | // |
| 98 | // Given g and a point x, optimizing f can now be restated as |
| 99 | // |
| 100 | // min f(Plus(x, delta)) |
| 101 | // delta |
| 102 | // |
| 103 | // Given a solution delta to this problem, the optimal value is then |
| 104 | // given by |
| 105 | // |
| 106 | // x* = Plus(x, delta) |
| 107 | // |
| 108 | // The class LocalParameterization defines the function Plus and its |
| 109 | // Jacobian which is needed to compute the Jacobian of f w.r.t delta. |
| 110 | class LocalParameterization { |
| 111 | public: |
| 112 | virtual ~LocalParameterization() {} |
| 113 | |
| 114 | // Generalization of the addition operation, |
| 115 | // |
| 116 | // x_plus_delta = Plus(x, delta) |
| 117 | // |
| 118 | // with the condition that Plus(x, 0) = x. |
| 119 | virtual bool Plus(const double* x, |
| 120 | const double* delta, |
| 121 | double* x_plus_delta) const = 0; |
| 122 | |
| 123 | // The jacobian of Plus(x, delta) w.r.t delta at delta = 0. |
| 124 | virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0; |
| 125 | |
| 126 | // Size of x. |
| 127 | virtual int GlobalSize() const = 0; |
| 128 | |
| 129 | // Size of delta. |
| 130 | virtual int LocalSize() const = 0; |
| 131 | }; |
| 132 | |
| 133 | // Some basic parameterizations |
| 134 | |
| 135 | // Identity Parameterization: Plus(x, delta) = x + delta |
| 136 | class IdentityParameterization : public LocalParameterization { |
| 137 | public: |
| 138 | explicit IdentityParameterization(int size); |
| 139 | virtual ~IdentityParameterization() {} |
| 140 | virtual bool Plus(const double* x, |
| 141 | const double* delta, |
| 142 | double* x_plus_delta) const; |
| 143 | virtual bool ComputeJacobian(const double* x, |
| 144 | double* jacobian) const; |
| 145 | virtual int GlobalSize() const { return size_; } |
| 146 | virtual int LocalSize() const { return size_; } |
| 147 | |
| 148 | private: |
| 149 | const int size_; |
| 150 | }; |
| 151 | |
| 152 | // Hold a subset of the parameters inside a parameter block constant. |
| 153 | class SubsetParameterization : public LocalParameterization { |
| 154 | public: |
| 155 | explicit SubsetParameterization(int size, |
| 156 | const vector<int>& constant_parameters); |
| 157 | virtual ~SubsetParameterization() {} |
| 158 | virtual bool Plus(const double* x, |
| 159 | const double* delta, |
| 160 | double* x_plus_delta) const; |
| 161 | virtual bool ComputeJacobian(const double* x, |
| 162 | double* jacobian) const; |
| 163 | virtual int GlobalSize() const { return constancy_mask_.size(); } |
| 164 | virtual int LocalSize() const { return local_size_; } |
| 165 | |
| 166 | private: |
| 167 | const int local_size_; |
| 168 | vector<int> constancy_mask_; |
| 169 | }; |
| 170 | |
| 171 | // Plus(x, delta) = [cos(|delta|), sin(|delta|) delta / |delta|] * x |
| 172 | // with * being the quaternion multiplication operator. Here we assume |
| 173 | // that the first element of the quaternion vector is the real (cos |
| 174 | // theta) part. |
| 175 | class QuaternionParameterization : public LocalParameterization { |
| 176 | public: |
| 177 | virtual ~QuaternionParameterization() {} |
| 178 | virtual bool Plus(const double* x, |
| 179 | const double* delta, |
| 180 | double* x_plus_delta) const; |
| 181 | virtual bool ComputeJacobian(const double* x, |
| 182 | double* jacobian) const; |
| 183 | virtual int GlobalSize() const { return 4; } |
| 184 | virtual int LocalSize() const { return 3; } |
| 185 | }; |
| 186 | |
| 187 | } // namespace ceres |
| 188 | |
| 189 | #endif // CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_ |