blob: ae347fb3455d24fc6e24dc70e03573bf1c8bb382 [file] [log] [blame]
Markus Mollc9eca782012-07-25 11:34:59 +02001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: moll.markus@arcor.de (Markus Moll)
30
31#include "ceres/polynomial_solver.h"
32
33#include <limits>
34#include <cmath>
35#include <cstddef>
36#include <algorithm>
37#include "gtest/gtest.h"
38#include "ceres/test_util.h"
39
40namespace ceres {
41namespace internal {
42namespace {
43
44// For IEEE-754 doubles, machine precision is about 2e-16.
45const double kEpsilon = 1e-13;
46const double kEpsilonLoose = 1e-9;
47
48// Return the constant polynomial p(x) = 1.23.
49Vector ConstantPolynomial(double value) {
50 Vector poly(1);
51 poly(0) = value;
52 return poly;
53}
54
55// Return the polynomial p(x) = poly(x) * (x - root).
56Vector AddRealRoot(const Vector& poly, double root) {
57 Vector poly2(poly.size() + 1);
58 poly2.setZero();
59 poly2.head(poly.size()) += poly;
60 poly2.tail(poly.size()) -= root * poly;
61 return poly2;
62}
63
64// Return the polynomial
65// p(x) = poly(x) * (x - real - imag*i) * (x - real + imag*i).
66Vector AddComplexRootPair(const Vector& poly, double real, double imag) {
67 Vector poly2(poly.size() + 2);
68 poly2.setZero();
69 // Multiply poly by x^2 - 2real + abs(real,imag)^2
70 poly2.head(poly.size()) += poly;
71 poly2.segment(1, poly.size()) -= 2 * real * poly;
72 poly2.tail(poly.size()) += (real*real + imag*imag) * poly;
73 return poly2;
74}
75
76// Sort the entries in a vector.
77// Needed because the roots are not returned in sorted order.
78Vector SortVector(const Vector& in) {
79 Vector out(in);
80 std::sort(out.data(), out.data() + out.size());
81 return out;
82}
83
84// Run a test with the polynomial defined by the N real roots in roots_real.
85// If use_real is false, NULL is passed as the real argument to
86// FindPolynomialRoots. If use_imaginary is false, NULL is passed as the
87// imaginary argument to FindPolynomialRoots.
88template<int N>
89void RunPolynomialTestRealRoots(const double (&real_roots)[N],
90 bool use_real,
91 bool use_imaginary,
92 double epsilon) {
93 Vector real;
94 Vector imaginary;
95 Vector poly = ConstantPolynomial(1.23);
96 for (int i = 0; i < N; ++i) {
97 poly = AddRealRoot(poly, real_roots[i]);
98 }
99 Vector* const real_ptr = use_real ? &real : NULL;
100 Vector* const imaginary_ptr = use_imaginary ? &imaginary : NULL;
101 bool success = FindPolynomialRoots(poly, real_ptr, imaginary_ptr);
102
103 EXPECT_EQ(success, true);
104 if (use_real) {
105 EXPECT_EQ(real.size(), N);
106 real = SortVector(real);
107 ExpectArraysClose(N, real.data(), real_roots, epsilon);
108 }
109 if (use_imaginary) {
110 EXPECT_EQ(imaginary.size(), N);
111 const Vector zeros = Vector::Zero(N);
112 ExpectArraysClose(N, imaginary.data(), zeros.data(), epsilon);
113 }
114}
115} // namespace
116
117TEST(PolynomialSolver, InvalidPolynomialOfZeroLengthIsRejected) {
118 // Vector poly(0) is an ambiguous constructor call, so
119 // use the constructor with explicit column count.
120 Vector poly(0, 1);
121 Vector real;
122 Vector imag;
123 bool success = FindPolynomialRoots(poly, &real, &imag);
124
125 EXPECT_EQ(success, false);
126}
127
128TEST(PolynomialSolver, ConstantPolynomialReturnsNoRoots) {
129 Vector poly = ConstantPolynomial(1.23);
130 Vector real;
131 Vector imag;
132 bool success = FindPolynomialRoots(poly, &real, &imag);
133
134 EXPECT_EQ(success, true);
135 EXPECT_EQ(real.size(), 0);
136 EXPECT_EQ(imag.size(), 0);
137}
138
139TEST(PolynomialSolver, LinearPolynomialWithPositiveRootWorks) {
140 const double roots[1] = { 42.42 };
141 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
142}
143
144TEST(PolynomialSolver, LinearPolynomialWithNegativeRootWorks) {
145 const double roots[1] = { -42.42 };
146 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
147}
148
149TEST(PolynomialSolver, QuadraticPolynomialWithPositiveRootsWorks) {
150 const double roots[2] = { 1.0, 42.42 };
151 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
152}
153
154TEST(PolynomialSolver, QuadraticPolynomialWithOneNegativeRootWorks) {
155 const double roots[2] = { -42.42, 1.0 };
156 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
157}
158
159TEST(PolynomialSolver, QuadraticPolynomialWithTwoNegativeRootsWorks) {
160 const double roots[2] = { -42.42, -1.0 };
161 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
162}
163
164TEST(PolynomialSolver, QuadraticPolynomialWithCloseRootsWorks) {
165 const double roots[2] = { 42.42, 42.43 };
166 RunPolynomialTestRealRoots(roots, true, false, kEpsilonLoose);
167}
168
169TEST(PolynomialSolver, QuadraticPolynomialWithComplexRootsWorks) {
170 Vector real;
171 Vector imag;
172
173 Vector poly = ConstantPolynomial(1.23);
174 poly = AddComplexRootPair(poly, 42.42, 4.2);
175 bool success = FindPolynomialRoots(poly, &real, &imag);
176
177 EXPECT_EQ(success, true);
178 EXPECT_EQ(real.size(), 2);
179 EXPECT_EQ(imag.size(), 2);
180 ExpectClose(real(0), 42.42, kEpsilon);
181 ExpectClose(real(1), 42.42, kEpsilon);
182 ExpectClose(std::abs(imag(0)), 4.2, kEpsilon);
183 ExpectClose(std::abs(imag(1)), 4.2, kEpsilon);
184 ExpectClose(std::abs(imag(0) + imag(1)), 0.0, kEpsilon);
185}
186
187TEST(PolynomialSolver, QuarticPolynomialWorks) {
188 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
189 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
190}
191
192TEST(PolynomialSolver, QuarticPolynomialWithTwoClustersOfCloseRootsWorks) {
193 const double roots[4] = { 1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5 };
194 RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose);
195}
196
197TEST(PolynomialSolver, QuarticPolynomialWithTwoZeroRootsWorks) {
198 const double roots[4] = { -42.42, 0.0, 0.0, 42.42 };
199 RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose);
200}
201
202TEST(PolynomialSolver, QuarticMonomialWorks) {
203 const double roots[4] = { 0.0, 0.0, 0.0, 0.0 };
204 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
205}
206
207TEST(PolynomialSolver, NullPointerAsImaginaryPartWorks) {
208 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
209 RunPolynomialTestRealRoots(roots, true, false, kEpsilon);
210}
211
212TEST(PolynomialSolver, NullPointerAsRealPartWorks) {
213 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
214 RunPolynomialTestRealRoots(roots, false, true, kEpsilon);
215}
216
217TEST(PolynomialSolver, BothOutputArgumentsNullWorks) {
218 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
219 RunPolynomialTestRealRoots(roots, false, false, kEpsilon);
220}
221
222} // namespace internal
223} // namespace ceres