Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: moll.markus@arcor.de (Markus Moll) |
| 30 | |
| 31 | #include "ceres/polynomial_solver.h" |
| 32 | |
| 33 | #include <limits> |
| 34 | #include <cmath> |
| 35 | #include <cstddef> |
| 36 | #include <algorithm> |
| 37 | #include "gtest/gtest.h" |
| 38 | #include "ceres/test_util.h" |
| 39 | |
| 40 | namespace ceres { |
| 41 | namespace internal { |
| 42 | namespace { |
| 43 | |
| 44 | // For IEEE-754 doubles, machine precision is about 2e-16. |
| 45 | const double kEpsilon = 1e-13; |
| 46 | const double kEpsilonLoose = 1e-9; |
| 47 | |
| 48 | // Return the constant polynomial p(x) = 1.23. |
| 49 | Vector ConstantPolynomial(double value) { |
| 50 | Vector poly(1); |
| 51 | poly(0) = value; |
| 52 | return poly; |
| 53 | } |
| 54 | |
| 55 | // Return the polynomial p(x) = poly(x) * (x - root). |
| 56 | Vector AddRealRoot(const Vector& poly, double root) { |
| 57 | Vector poly2(poly.size() + 1); |
| 58 | poly2.setZero(); |
| 59 | poly2.head(poly.size()) += poly; |
| 60 | poly2.tail(poly.size()) -= root * poly; |
| 61 | return poly2; |
| 62 | } |
| 63 | |
| 64 | // Return the polynomial |
| 65 | // p(x) = poly(x) * (x - real - imag*i) * (x - real + imag*i). |
| 66 | Vector AddComplexRootPair(const Vector& poly, double real, double imag) { |
| 67 | Vector poly2(poly.size() + 2); |
| 68 | poly2.setZero(); |
| 69 | // Multiply poly by x^2 - 2real + abs(real,imag)^2 |
| 70 | poly2.head(poly.size()) += poly; |
| 71 | poly2.segment(1, poly.size()) -= 2 * real * poly; |
| 72 | poly2.tail(poly.size()) += (real*real + imag*imag) * poly; |
| 73 | return poly2; |
| 74 | } |
| 75 | |
| 76 | // Sort the entries in a vector. |
| 77 | // Needed because the roots are not returned in sorted order. |
| 78 | Vector SortVector(const Vector& in) { |
| 79 | Vector out(in); |
| 80 | std::sort(out.data(), out.data() + out.size()); |
| 81 | return out; |
| 82 | } |
| 83 | |
| 84 | // Run a test with the polynomial defined by the N real roots in roots_real. |
| 85 | // If use_real is false, NULL is passed as the real argument to |
| 86 | // FindPolynomialRoots. If use_imaginary is false, NULL is passed as the |
| 87 | // imaginary argument to FindPolynomialRoots. |
| 88 | template<int N> |
| 89 | void RunPolynomialTestRealRoots(const double (&real_roots)[N], |
| 90 | bool use_real, |
| 91 | bool use_imaginary, |
| 92 | double epsilon) { |
| 93 | Vector real; |
| 94 | Vector imaginary; |
| 95 | Vector poly = ConstantPolynomial(1.23); |
| 96 | for (int i = 0; i < N; ++i) { |
| 97 | poly = AddRealRoot(poly, real_roots[i]); |
| 98 | } |
| 99 | Vector* const real_ptr = use_real ? &real : NULL; |
| 100 | Vector* const imaginary_ptr = use_imaginary ? &imaginary : NULL; |
| 101 | bool success = FindPolynomialRoots(poly, real_ptr, imaginary_ptr); |
| 102 | |
| 103 | EXPECT_EQ(success, true); |
| 104 | if (use_real) { |
| 105 | EXPECT_EQ(real.size(), N); |
| 106 | real = SortVector(real); |
| 107 | ExpectArraysClose(N, real.data(), real_roots, epsilon); |
| 108 | } |
| 109 | if (use_imaginary) { |
| 110 | EXPECT_EQ(imaginary.size(), N); |
| 111 | const Vector zeros = Vector::Zero(N); |
| 112 | ExpectArraysClose(N, imaginary.data(), zeros.data(), epsilon); |
| 113 | } |
| 114 | } |
| 115 | } // namespace |
| 116 | |
| 117 | TEST(PolynomialSolver, InvalidPolynomialOfZeroLengthIsRejected) { |
| 118 | // Vector poly(0) is an ambiguous constructor call, so |
| 119 | // use the constructor with explicit column count. |
| 120 | Vector poly(0, 1); |
| 121 | Vector real; |
| 122 | Vector imag; |
| 123 | bool success = FindPolynomialRoots(poly, &real, &imag); |
| 124 | |
| 125 | EXPECT_EQ(success, false); |
| 126 | } |
| 127 | |
| 128 | TEST(PolynomialSolver, ConstantPolynomialReturnsNoRoots) { |
| 129 | Vector poly = ConstantPolynomial(1.23); |
| 130 | Vector real; |
| 131 | Vector imag; |
| 132 | bool success = FindPolynomialRoots(poly, &real, &imag); |
| 133 | |
| 134 | EXPECT_EQ(success, true); |
| 135 | EXPECT_EQ(real.size(), 0); |
| 136 | EXPECT_EQ(imag.size(), 0); |
| 137 | } |
| 138 | |
| 139 | TEST(PolynomialSolver, LinearPolynomialWithPositiveRootWorks) { |
| 140 | const double roots[1] = { 42.42 }; |
| 141 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 142 | } |
| 143 | |
| 144 | TEST(PolynomialSolver, LinearPolynomialWithNegativeRootWorks) { |
| 145 | const double roots[1] = { -42.42 }; |
| 146 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 147 | } |
| 148 | |
| 149 | TEST(PolynomialSolver, QuadraticPolynomialWithPositiveRootsWorks) { |
| 150 | const double roots[2] = { 1.0, 42.42 }; |
| 151 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 152 | } |
| 153 | |
| 154 | TEST(PolynomialSolver, QuadraticPolynomialWithOneNegativeRootWorks) { |
| 155 | const double roots[2] = { -42.42, 1.0 }; |
| 156 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 157 | } |
| 158 | |
| 159 | TEST(PolynomialSolver, QuadraticPolynomialWithTwoNegativeRootsWorks) { |
| 160 | const double roots[2] = { -42.42, -1.0 }; |
| 161 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 162 | } |
| 163 | |
| 164 | TEST(PolynomialSolver, QuadraticPolynomialWithCloseRootsWorks) { |
| 165 | const double roots[2] = { 42.42, 42.43 }; |
| 166 | RunPolynomialTestRealRoots(roots, true, false, kEpsilonLoose); |
| 167 | } |
| 168 | |
| 169 | TEST(PolynomialSolver, QuadraticPolynomialWithComplexRootsWorks) { |
| 170 | Vector real; |
| 171 | Vector imag; |
| 172 | |
| 173 | Vector poly = ConstantPolynomial(1.23); |
| 174 | poly = AddComplexRootPair(poly, 42.42, 4.2); |
| 175 | bool success = FindPolynomialRoots(poly, &real, &imag); |
| 176 | |
| 177 | EXPECT_EQ(success, true); |
| 178 | EXPECT_EQ(real.size(), 2); |
| 179 | EXPECT_EQ(imag.size(), 2); |
| 180 | ExpectClose(real(0), 42.42, kEpsilon); |
| 181 | ExpectClose(real(1), 42.42, kEpsilon); |
| 182 | ExpectClose(std::abs(imag(0)), 4.2, kEpsilon); |
| 183 | ExpectClose(std::abs(imag(1)), 4.2, kEpsilon); |
| 184 | ExpectClose(std::abs(imag(0) + imag(1)), 0.0, kEpsilon); |
| 185 | } |
| 186 | |
| 187 | TEST(PolynomialSolver, QuarticPolynomialWorks) { |
| 188 | const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; |
| 189 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 190 | } |
| 191 | |
| 192 | TEST(PolynomialSolver, QuarticPolynomialWithTwoClustersOfCloseRootsWorks) { |
| 193 | const double roots[4] = { 1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5 }; |
| 194 | RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose); |
| 195 | } |
| 196 | |
| 197 | TEST(PolynomialSolver, QuarticPolynomialWithTwoZeroRootsWorks) { |
| 198 | const double roots[4] = { -42.42, 0.0, 0.0, 42.42 }; |
| 199 | RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose); |
| 200 | } |
| 201 | |
| 202 | TEST(PolynomialSolver, QuarticMonomialWorks) { |
| 203 | const double roots[4] = { 0.0, 0.0, 0.0, 0.0 }; |
| 204 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 205 | } |
| 206 | |
| 207 | TEST(PolynomialSolver, NullPointerAsImaginaryPartWorks) { |
| 208 | const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; |
| 209 | RunPolynomialTestRealRoots(roots, true, false, kEpsilon); |
| 210 | } |
| 211 | |
| 212 | TEST(PolynomialSolver, NullPointerAsRealPartWorks) { |
| 213 | const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; |
| 214 | RunPolynomialTestRealRoots(roots, false, true, kEpsilon); |
| 215 | } |
| 216 | |
| 217 | TEST(PolynomialSolver, BothOutputArgumentsNullWorks) { |
| 218 | const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; |
| 219 | RunPolynomialTestRealRoots(roots, false, false, kEpsilon); |
| 220 | } |
| 221 | |
| 222 | } // namespace internal |
| 223 | } // namespace ceres |