Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include <glog/logging.h> |
| 32 | #include "gtest/gtest.h" |
| 33 | #include "ceres/casts.h" |
| 34 | #include "ceres/compressed_row_sparse_matrix.h" |
| 35 | #include "ceres/linear_least_squares_problems.h" |
| 36 | #include "ceres/linear_solver.h" |
| 37 | #include "ceres/triplet_sparse_matrix.h" |
| 38 | #include "ceres/internal/scoped_ptr.h" |
| 39 | #include "ceres/types.h" |
| 40 | |
| 41 | |
| 42 | namespace ceres { |
| 43 | namespace internal { |
| 44 | |
| 45 | class UnsymmetricLinearSolverTest : public ::testing::Test { |
| 46 | protected : |
| 47 | virtual void SetUp() { |
| 48 | scoped_ptr<LinearLeastSquaresProblem> problem( |
| 49 | CreateLinearLeastSquaresProblemFromId(0)); |
| 50 | |
| 51 | CHECK_NOTNULL(problem.get()); |
| 52 | A_.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); |
| 53 | b_.reset(problem->b.release()); |
| 54 | D_.reset(problem->D.release()); |
| 55 | sol1_.reset(problem->x.release()); |
| 56 | sol2_.reset(problem->x_D.release()); |
| 57 | x_.reset(new double[A_->num_cols()]); |
| 58 | } |
| 59 | |
| 60 | void TestSolver(LinearSolverType linear_solver_type) { |
| 61 | LinearSolver::Options options; |
| 62 | options.type = linear_solver_type; |
| 63 | scoped_ptr<LinearSolver> solver(LinearSolver::Create(options)); |
| 64 | |
| 65 | LinearSolver::PerSolveOptions per_solve_options; |
| 66 | |
| 67 | // Unregularized |
| 68 | LinearSolver::Summary summary = |
| 69 | solver->Solve(A_.get(), b_.get(), per_solve_options, x_.get()); |
| 70 | |
| 71 | EXPECT_EQ(summary.termination_type, TOLERANCE); |
| 72 | |
| 73 | for (int i = 0; i < A_->num_cols(); ++i) { |
| 74 | EXPECT_NEAR(sol1_[i], x_[i], 1e-8); |
| 75 | } |
| 76 | |
| 77 | // Regularized solution |
| 78 | per_solve_options.D = D_.get(); |
| 79 | summary = solver->Solve(A_.get(), b_.get(), per_solve_options, x_.get()); |
| 80 | |
| 81 | EXPECT_EQ(summary.termination_type, TOLERANCE); |
| 82 | |
| 83 | for (int i = 0; i < A_->num_cols(); ++i) { |
| 84 | EXPECT_NEAR(sol2_[i], x_[i], 1e-8); |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | scoped_ptr<TripletSparseMatrix> A_; |
| 89 | scoped_array<double> b_; |
| 90 | scoped_array<double> D_; |
| 91 | scoped_array<double> sol1_; |
| 92 | scoped_array<double> sol2_; |
| 93 | |
| 94 | scoped_array<double> x_; |
| 95 | }; |
| 96 | |
| 97 | // TODO(keir): Reduce duplication. |
| 98 | TEST_F(UnsymmetricLinearSolverTest, DenseQR) { |
| 99 | LinearSolver::Options options; |
| 100 | options.type = DENSE_QR; |
| 101 | scoped_ptr<LinearSolver> solver(LinearSolver::Create(options)); |
| 102 | |
| 103 | LinearSolver::PerSolveOptions per_solve_options; |
| 104 | DenseSparseMatrix A(*A_); |
| 105 | |
| 106 | // Unregularized |
| 107 | LinearSolver::Summary summary = |
| 108 | solver->Solve(&A, b_.get(), per_solve_options, x_.get()); |
| 109 | |
| 110 | EXPECT_EQ(summary.termination_type, TOLERANCE); |
| 111 | for (int i = 0; i < A_->num_cols(); ++i) { |
| 112 | EXPECT_NEAR(sol1_[i], x_[i], 1e-8); |
| 113 | } |
| 114 | |
| 115 | VectorRef x(x_.get(), A_->num_cols()); |
| 116 | VectorRef b(b_.get(), A_->num_rows()); |
| 117 | Vector r = A.matrix()*x - b; |
| 118 | LOG(INFO) << "r = A*x - b: \n" << r; |
| 119 | |
| 120 | // Regularized solution |
| 121 | per_solve_options.D = D_.get(); |
| 122 | summary = solver->Solve(&A, b_.get(), per_solve_options, x_.get()); |
| 123 | |
| 124 | EXPECT_EQ(summary.termination_type, TOLERANCE); |
| 125 | for (int i = 0; i < A_->num_cols(); ++i) { |
| 126 | EXPECT_NEAR(sol2_[i], x_[i], 1e-8); |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | #ifndef CERES_NO_SUITESPARSE |
| 131 | TEST_F(UnsymmetricLinearSolverTest, SparseNormalCholesky) { |
| 132 | LinearSolver::Options options; |
| 133 | options.type = SPARSE_NORMAL_CHOLESKY; |
| 134 | scoped_ptr<LinearSolver>solver(LinearSolver::Create(options)); |
| 135 | |
| 136 | LinearSolver::PerSolveOptions per_solve_options; |
| 137 | CompressedRowSparseMatrix A(*A_); |
| 138 | |
| 139 | // Unregularized |
| 140 | LinearSolver::Summary summary = |
| 141 | solver->Solve(&A, b_.get(), per_solve_options, x_.get()); |
| 142 | |
| 143 | EXPECT_EQ(summary.termination_type, TOLERANCE); |
| 144 | for (int i = 0; i < A_->num_cols(); ++i) { |
| 145 | EXPECT_NEAR(sol1_[i], x_[i], 1e-8); |
| 146 | } |
| 147 | |
| 148 | // Regularized solution |
| 149 | per_solve_options.D = D_.get(); |
| 150 | summary = solver->Solve(&A, b_.get(), per_solve_options, x_.get()); |
| 151 | |
| 152 | EXPECT_EQ(summary.termination_type, TOLERANCE); |
| 153 | for (int i = 0; i < A_->num_cols(); ++i) { |
| 154 | EXPECT_NEAR(sol2_[i], x_[i], 1e-8); |
| 155 | } |
| 156 | } |
| 157 | #endif // CERES_NO_SUITESPARSE |
| 158 | |
| 159 | } // namespace internal |
| 160 | } // namespace ceres |