blob: da9ee2c7993e7b5b4816838d0aca32368ec3fdd1 [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Helpers for making CostFunctions as needed by the least squares framework,
32// with Jacobians computed via automatic differentiation. For more information
33// on automatic differentation, see the wikipedia article at
34// http://en.wikipedia.org/wiki/Automatic_differentiation
35//
36// To get an auto differentiated cost function, you must define a class with a
37// templated operator() (a functor) that computes the cost function in terms of
38// the template parameter T. The autodiff framework substitutes appropriate
39// "jet" objects for T in order to compute the derivative when necessary, but
40// this is hidden, and you should write the function as if T were a scalar type
41// (e.g. a double-precision floating point number).
42//
43// The function must write the computed value in the last argument (the only
44// non-const one) and return true to indicate success.
45//
46// For example, consider a scalar error e = k - x'y, where both x and y are
47// two-dimensional column vector parameters, the prime sign indicates
48// transposition, and k is a constant. The form of this error, which is the
49// difference between a constant and an expression, is a common pattern in least
50// squares problems. For example, the value x'y might be the model expectation
51// for a series of measurements, where there is an instance of the cost function
52// for each measurement k.
53//
54// The actual cost added to the total problem is e^2, or (k - x'k)^2; however,
55// the squaring is implicitly done by the optimization framework.
56//
57// To write an auto-differentiable cost function for the above model, first
58// define the object
59//
60// class MyScalarCostFunction {
61// MyScalarCostFunction(double k): k_(k) {}
62//
63// template <typename T>
64// bool operator()(const T* const x , const T* const y, T* e) const {
65// e[0] = T(k_) - x[0] * y[0] + x[1] * y[1];
66// return true;
67// }
68//
69// private:
70// double k_;
71// };
72//
73// Note that in the declaration of operator() the input parameters x and y come
74// first, and are passed as const pointers to arrays of T. If there were three
75// input parameters, then the third input parameter would come after y. The
76// output is always the last parameter, and is also a pointer to an array. In
77// the example above, e is a scalar, so only e[0] is set.
78//
79// Then given this class definition, the auto differentiated cost function for
80// it can be constructed as follows.
81//
82// CostFunction* cost_function
83// = new AutoDiffCostFunction<MyScalarCostFunction, 1, 2, 2>(
84// new MyScalarCostFunction(1.0)); ^ ^ ^
85// | | |
86// Dimension of residual ------+ | |
87// Dimension of x ----------------+ |
88// Dimension of y -------------------+
89//
90// In this example, there is usually an instance for each measumerent of k.
91//
92// In the instantiation above, the template parameters following
93// "MyScalarCostFunction", "1, 2, 2", describe the functor as computing a
94// 1-dimensional output from two arguments, both 2-dimensional.
95//
Keir Mierlefdeb5772012-05-09 07:38:07 -070096// The autodiff cost function also supports cost functions with a
97// runtime-determined number of residuals. For example:
98//
99// CostFunction* cost_function
100// = new AutoDiffCostFunction<MyScalarCostFunction, DYNAMIC, 2, 2>(
101// new CostFunctionWithDynamicNumResiduals(1.0), ^ ^ ^
102// runtime_number_of_residuals); <----+ | | |
103// | | | |
104// | | | |
105// Actual number of residuals ------+ | | |
106// Indicate dynamic number of residuals ---------+ | |
107// Dimension of x -------------------------------------+ |
108// Dimension of y ----------------------------------------+
109//
Keir Mierle8ebb0732012-04-30 23:09:08 -0700110// The framework can currently accommodate cost functions of up to 6 independent
111// variables, and there is no limit on the dimensionality of each of them.
112//
113// WARNING #1: Since the functor will get instantiated with different types for
114// T, you must to convert from other numeric types to T before mixing
115// computations with other variables of type T. In the example above, this is
116// seen where instead of using k_ directly, k_ is wrapped with T(k_).
117//
118// WARNING #2: A common beginner's error when first using autodiff cost
119// functions is to get the sizing wrong. In particular, there is a tendency to
120// set the template parameters to (dimension of residual, number of parameters)
121// instead of passing a dimension parameter for *every parameter*. In the
122// example above, that would be <MyScalarCostFunction, 1, 2>, which is missing
123// the last '2' argument. Please be careful when setting the size parameters.
124
125#ifndef CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
126#define CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
127
128#include <glog/logging.h>
129#include "ceres/internal/autodiff.h"
130#include "ceres/internal/scoped_ptr.h"
131#include "ceres/sized_cost_function.h"
Keir Mierlefdeb5772012-05-09 07:38:07 -0700132#include "ceres/types.h"
Keir Mierle8ebb0732012-04-30 23:09:08 -0700133
134namespace ceres {
135
Keir Mierlefdeb5772012-05-09 07:38:07 -0700136// A cost function which computes the derivative of the cost with respect to
137// the parameters (a.k.a. the jacobian) using an autodifferentiation framework.
138// The first template argument is the functor object, described in the header
139// comment. The second argument is the dimension of the residual (or
140// ceres::DYNAMIC to indicate it will be set at runtime), and subsequent
Keir Mierle8ebb0732012-04-30 23:09:08 -0700141// arguments describe the size of the Nth parameter, one per parameter.
142//
Keir Mierlefdeb5772012-05-09 07:38:07 -0700143// The constructors take ownership of the cost functor.
144//
145// If the number of residuals (argument "M" below) is ceres::DYNAMIC, then the
146// two-argument constructor must be used. The second constructor takes a number
147// of residuals (in addition to the templated number of residuals). This allows
148// for varying the number of residuals for a single autodiff cost function at
149// runtime.
Keir Mierle8ebb0732012-04-30 23:09:08 -0700150template <typename CostFunctor,
Keir Mierlefdeb5772012-05-09 07:38:07 -0700151 int M, // Number of residuals, or ceres::DYNAMIC.
Keir Mierle8ebb0732012-04-30 23:09:08 -0700152 int N0, // Number of parameters in block 0.
153 int N1 = 0, // Number of parameters in block 1.
154 int N2 = 0, // Number of parameters in block 2.
155 int N3 = 0, // Number of parameters in block 3.
156 int N4 = 0, // Number of parameters in block 4.
157 int N5 = 0> // Number of parameters in block 5.
158class AutoDiffCostFunction :
159 public SizedCostFunction<M, N0, N1, N2, N3, N4, N5> {
160 public:
Keir Mierlefdeb5772012-05-09 07:38:07 -0700161 // Takes ownership of functor. Uses the template-provided value for the
162 // number of residuals ("M").
163 explicit AutoDiffCostFunction(CostFunctor* functor)
164 : functor_(functor) {
165 CHECK_NE(M, DYNAMIC) << "Can't run the fixed-size constructor if the "
166 << "number of residuals is set to ceres::DYNAMIC.";
167 }
168
169 // Takes ownership of functor. Ignores the template-provided number of
170 // residuals ("M") in favor of the "num_residuals" argument provided.
171 //
172 // This allows for having autodiff cost functions which return varying
173 // numbers of residuals at runtime.
174 AutoDiffCostFunction(CostFunctor* functor, int num_residuals)
175 : functor_(functor) {
176 CHECK_EQ(M, DYNAMIC) << "Can't run the dynamic-size constructor if the "
177 << "number of residuals is not ceres::DYNAMIC.";
178 SizedCostFunction<M, N0, N1, N2, N3, N4, N5>::set_num_residuals(num_residuals);
179 }
Keir Mierle8ebb0732012-04-30 23:09:08 -0700180
181 virtual ~AutoDiffCostFunction() {}
182
183 // Implementation details follow; clients of the autodiff cost function should
184 // not have to examine below here.
185 //
186 // To handle varardic cost functions, some template magic is needed. It's
187 // mostly hidden inside autodiff.h.
188 virtual bool Evaluate(double const* const* parameters,
189 double* residuals,
190 double** jacobians) const {
191 if (!jacobians) {
192 return internal::VariadicEvaluate<
Keir Mierleeaccbb32012-05-09 05:31:29 -0700193 CostFunctor, double, N0, N1, N2, N3, N4, N5>
Keir Mierle8ebb0732012-04-30 23:09:08 -0700194 ::Call(*functor_, parameters, residuals);
195 }
196 return internal::AutoDiff<CostFunctor, double,
Keir Mierlefdeb5772012-05-09 07:38:07 -0700197 N0, N1, N2, N3, N4, N5>::Differentiate(
198 *functor_,
199 parameters,
200 SizedCostFunction<M, N0, N1, N2, N3, N4, N5>::num_residuals(),
201 residuals,
202 jacobians);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700203 }
204
205 private:
206 internal::scoped_ptr<CostFunctor> functor_;
207};
208
209} // namespace ceres
210
211#endif // CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_