blob: 29bac3c684013832dc52038d0aa4399238ed8d9f [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: Sameer Agarwal (sameeragarwal@google.com)
30// David Gallup (dgallup@google.com)
31
32#include "ceres/canonical_views_clustering.h"
33
34#include "ceres/collections_port.h"
35#include "ceres/graph.h"
36#include "gtest/gtest.h"
37
38namespace ceres {
39namespace internal {
40
41const int kVertexIds[] = {0, 1, 2, 3};
42class CanonicalViewsTest : public ::testing::Test {
43 protected:
44 virtual void SetUp() {
45 // The graph structure is as follows.
46 //
47 // Vertex weights: 0 2 2 0
48 // V0-----V1-----V2-----V3
49 // Edge weights: 0.8 0.9 0.3
50 const double kVertexWeights[] = {0.0, 2.0, 2.0, -1.0};
51 for (int i = 0; i < 4; ++i) {
52 graph_.AddVertex(i, kVertexWeights[i]);
53 }
54 // Create self edges.
55 // CanonicalViews requires that every view "sees" itself.
56 for (int i = 0; i < 4; ++i) {
57 graph_.AddEdge(i, i, 1.0);
58 }
59
60 // Create three edges.
61 const double kEdgeWeights[] = {0.8, 0.9, 0.3};
62 for (int i = 0; i < 3; ++i) {
63 // The graph interface is directed, so remember to create both
64 // edges.
65 graph_.AddEdge(kVertexIds[i], kVertexIds[i + 1], kEdgeWeights[i]);
66 }
67 }
68
69 void ComputeClustering() {
70 ComputeCanonicalViewsClustering(graph_, options_, &centers_, &membership_);
71 }
72
73 Graph<int> graph_;
74
75 CanonicalViewsClusteringOptions options_;
76 vector<int> centers_;
77 HashMap<int, int> membership_;
78};
79
80TEST_F(CanonicalViewsTest, ComputeCanonicalViewsTest) {
81 options_.min_views = 0;
82 options_.size_penalty_weight = 0.5;
83 options_.similarity_penalty_weight = 0.0;
84 options_.view_score_weight = 0.0;
85 ComputeClustering();
86
87 // 2 canonical views.
88 EXPECT_EQ(centers_.size(), 2);
89 EXPECT_EQ(centers_[0], kVertexIds[1]);
90 EXPECT_EQ(centers_[1], kVertexIds[3]);
91
92 // Check cluster membership.
93 EXPECT_EQ(FindOrDie(membership_, kVertexIds[0]), 0);
94 EXPECT_EQ(FindOrDie(membership_, kVertexIds[1]), 0);
95 EXPECT_EQ(FindOrDie(membership_, kVertexIds[2]), 0);
96 EXPECT_EQ(FindOrDie(membership_, kVertexIds[3]), 1);
97}
98
99// Increases size penalty so the second canonical view won't be
100// chosen.
101TEST_F(CanonicalViewsTest, SizePenaltyTest) {
102 options_.min_views = 0;
103 options_.size_penalty_weight = 2.0;
104 options_.similarity_penalty_weight = 0.0;
105 options_.view_score_weight = 0.0;
106 ComputeClustering();
107
108 // 1 canonical view.
109 EXPECT_EQ(centers_.size(), 1);
110 EXPECT_EQ(centers_[0], kVertexIds[1]);
111}
112
113
114// Increases view score weight so vertex 2 will be chosen.
115TEST_F(CanonicalViewsTest, ViewScoreTest) {
116 options_.min_views = 0;
117 options_.size_penalty_weight = 0.5;
118 options_.similarity_penalty_weight = 0.0;
119 options_.view_score_weight = 1.0;
120 ComputeClustering();
121
122 // 2 canonical views.
123 EXPECT_EQ(centers_.size(), 2);
124 EXPECT_EQ(centers_[0], kVertexIds[1]);
125 EXPECT_EQ(centers_[1], kVertexIds[2]);
126}
127
128// Increases similarity penalty so vertex 2 won't be chosen despite
129// it's view score.
130TEST_F(CanonicalViewsTest, SimilarityPenaltyTest) {
131 options_.min_views = 0;
132 options_.size_penalty_weight = 0.5;
133 options_.similarity_penalty_weight = 3.0;
134 options_.view_score_weight = 1.0;
135 ComputeClustering();
136
137 // 2 canonical views.
138 EXPECT_EQ(centers_.size(), 1);
139 EXPECT_EQ(centers_[0], kVertexIds[1]);
140}
141
142} // namespace internal
143} // namespace ceres