Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // |
| 31 | // For generalized bi-partite Jacobian matrices that arise in |
| 32 | // Structure from Motion related problems, it is sometimes useful to |
| 33 | // have access to the two parts of the matrix as linear operators |
| 34 | // themselves. This class provides that functionality. |
| 35 | |
| 36 | #ifndef CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_ |
| 37 | #define CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_ |
| 38 | |
| 39 | #include "ceres/block_sparse_matrix.h" |
| 40 | |
| 41 | namespace ceres { |
| 42 | namespace internal { |
| 43 | |
| 44 | // Given generalized bi-partite matrix A = [E F], with the same block |
| 45 | // structure as required by the Schur complement based solver, found |
| 46 | // in explicit_schur_complement_solver.h, provide access to the |
| 47 | // matrices E and F and their outer products E'E and F'F with |
| 48 | // themselves. |
| 49 | // |
| 50 | // Lack of BlockStructure object will result in a crash and if the |
| 51 | // block structure of the matrix does not satisfy the requirements of |
| 52 | // the Schur complement solver it will result in unpredictable and |
| 53 | // wrong output. |
| 54 | // |
| 55 | // This class lives in the internal name space as its a utility class |
| 56 | // to be used by the IterativeSchurComplementSolver class, found in |
| 57 | // iterative_schur_complement_solver.h, and is not meant for general |
| 58 | // consumption. |
| 59 | class PartitionedMatrixView { |
| 60 | public: |
| 61 | // matrix = [E F], where the matrix E contains the first |
| 62 | // num_col_blocks_a column blocks. |
| 63 | PartitionedMatrixView(const BlockSparseMatrixBase& matrix, |
| 64 | int num_col_blocks_a); |
| 65 | ~PartitionedMatrixView(); |
| 66 | |
| 67 | // y += E'x |
| 68 | void LeftMultiplyE(const double* x, double* y) const; |
| 69 | |
| 70 | // y += F'x |
| 71 | void LeftMultiplyF(const double* x, double* y) const; |
| 72 | |
| 73 | // y += Ex |
| 74 | void RightMultiplyE(const double* x, double* y) const; |
| 75 | |
| 76 | // y += Fx |
| 77 | void RightMultiplyF(const double* x, double* y) const; |
| 78 | |
| 79 | // Create and return the block diagonal of the matrix E'E. |
| 80 | BlockSparseMatrix* CreateBlockDiagonalEtE() const; |
| 81 | |
| 82 | // Create and return the block diagonal of the matrix F'F. |
| 83 | BlockSparseMatrix* CreateBlockDiagonalFtF() const; |
| 84 | |
| 85 | // Compute the block diagonal of the matrix E'E and store it in |
| 86 | // block_diagonal. The matrix block_diagonal is expected to have a |
| 87 | // BlockStructure (preferably created using |
| 88 | // CreateBlockDiagonalMatrixEtE) which is has the same structure as |
| 89 | // the block diagonal of E'E. |
| 90 | void UpdateBlockDiagonalEtE(BlockSparseMatrix* block_diagonal) const; |
| 91 | |
| 92 | // Compute the block diagonal of the matrix F'F and store it in |
| 93 | // block_diagonal. The matrix block_diagonal is expected to have a |
| 94 | // BlockStructure (preferably created using |
| 95 | // CreateBlockDiagonalMatrixFtF) which is has the same structure as |
| 96 | // the block diagonal of F'F. |
| 97 | void UpdateBlockDiagonalFtF(BlockSparseMatrix* block_diagonal) const; |
| 98 | |
| 99 | int num_col_blocks_e() const { return num_col_blocks_e_; } |
| 100 | int num_col_blocks_f() const { return num_col_blocks_f_; } |
| 101 | int num_cols_e() const { return num_cols_e_; } |
| 102 | int num_cols_f() const { return num_cols_f_; } |
| 103 | int num_rows() const { return matrix_.num_rows(); } |
| 104 | int num_cols() const { return matrix_.num_cols(); } |
| 105 | |
| 106 | private: |
| 107 | BlockSparseMatrix* CreateBlockDiagonalMatrixLayout(int start_col_block, |
| 108 | int end_col_block) const; |
| 109 | |
| 110 | const BlockSparseMatrixBase& matrix_; |
| 111 | int num_row_blocks_e_; |
| 112 | int num_col_blocks_e_; |
| 113 | int num_col_blocks_f_; |
| 114 | int num_cols_e_; |
| 115 | int num_cols_f_; |
| 116 | }; |
| 117 | |
| 118 | } // namespace internal |
| 119 | } // namespace ceres |
| 120 | |
| 121 | #endif // CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_ |