Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/corrector.h" |
| 32 | |
| 33 | #include <algorithm> |
| 34 | #include <cmath> |
| 35 | #include <cstring> |
| 36 | #include <cstdlib> |
| 37 | #include "gtest/gtest.h" |
| 38 | #include "ceres/random.h" |
| 39 | #include "ceres/internal/eigen.h" |
| 40 | |
| 41 | namespace ceres { |
| 42 | namespace internal { |
| 43 | |
| 44 | // If rho[1] is zero, the Corrector constructor should crash. |
| 45 | TEST(Corrector, ZeroGradientDeathTest) { |
| 46 | const double kRho[] = {0.0, 0.0, 0.0}; |
Sameer Agarwal | c014997 | 2012-09-18 13:55:18 -0700 | [diff] [blame] | 47 | EXPECT_DEATH_IF_SUPPORTED({Corrector c(1.0, kRho);}, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 48 | ".*"); |
| 49 | } |
| 50 | |
| 51 | // If rho[1] is negative, the Corrector constructor should crash. |
| 52 | TEST(Corrector, NegativeGradientDeathTest) { |
| 53 | const double kRho[] = {0.0, -0.1, 0.0}; |
Sameer Agarwal | c014997 | 2012-09-18 13:55:18 -0700 | [diff] [blame] | 54 | EXPECT_DEATH_IF_SUPPORTED({Corrector c(1.0, kRho);}, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 55 | ".*"); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 56 | } |
| 57 | |
| 58 | TEST(Corrector, ScalarCorrection) { |
| 59 | double residuals = sqrt(3.0); |
| 60 | double jacobian = 10.0; |
| 61 | double sq_norm = residuals * residuals; |
| 62 | |
| 63 | const double kRho[] = {sq_norm, 0.1, -0.01}; |
| 64 | |
| 65 | // In light of the rho'' < 0 clamping now implemented in |
| 66 | // corrector.cc, alpha = 0 whenever rho'' < 0. |
| 67 | const double kAlpha = 0.0; |
| 68 | |
| 69 | // Thus the expected value of the residual is |
| 70 | // residual[i] * sqrt(kRho[1]) / (1.0 - kAlpha). |
| 71 | const double kExpectedResidual = |
| 72 | residuals * sqrt(kRho[1]) / (1 - kAlpha); |
| 73 | |
| 74 | // The jacobian in this case will be |
| 75 | // sqrt(kRho[1]) * (1 - kAlpha) * jacobian. |
| 76 | const double kExpectedJacobian = sqrt(kRho[1]) * (1 - kAlpha) * jacobian; |
| 77 | |
| 78 | Corrector c(sq_norm, kRho); |
| 79 | c.CorrectJacobian(1.0, 1.0, &residuals, &jacobian); |
| 80 | c.CorrectResiduals(1.0, &residuals); |
| 81 | |
| 82 | ASSERT_NEAR(residuals, kExpectedResidual, 1e-6); |
| 83 | ASSERT_NEAR(kExpectedJacobian, jacobian, 1e-6); |
| 84 | } |
| 85 | |
| 86 | TEST(Corrector, ScalarCorrectionZeroResidual) { |
| 87 | double residuals = 0.0; |
| 88 | double jacobian = 10.0; |
| 89 | double sq_norm = residuals * residuals; |
| 90 | |
| 91 | const double kRho[] = {0.0, 0.1, -0.01}; |
| 92 | Corrector c(sq_norm, kRho); |
| 93 | |
| 94 | // The alpha equation is |
| 95 | // 1/2 alpha^2 - alpha + 0.0 = 0. |
| 96 | // i.e. alpha = 1.0 - sqrt(1.0). |
| 97 | // alpha = 0.0. |
| 98 | // Thus the expected value of the residual is |
| 99 | // residual[i] * sqrt(kRho[1]) |
| 100 | const double kExpectedResidual = residuals * sqrt(kRho[1]); |
| 101 | |
| 102 | // The jacobian in this case will be |
| 103 | // sqrt(kRho[1]) * jacobian. |
| 104 | const double kExpectedJacobian = sqrt(kRho[1]) * jacobian; |
| 105 | |
| 106 | c.CorrectJacobian(1, 1, &residuals, &jacobian); |
| 107 | c.CorrectResiduals(1, &residuals); |
| 108 | |
| 109 | ASSERT_NEAR(residuals, kExpectedResidual, 1e-6); |
| 110 | ASSERT_NEAR(kExpectedJacobian, jacobian, 1e-6); |
| 111 | } |
| 112 | |
| 113 | // Scaling behaviour for one dimensional functions. |
| 114 | TEST(Corrector, ScalarCorrectionAlphaClamped) { |
| 115 | double residuals = sqrt(3.0); |
| 116 | double jacobian = 10.0; |
| 117 | double sq_norm = residuals * residuals; |
| 118 | |
| 119 | const double kRho[] = {3, 0.1, -0.1}; |
| 120 | |
| 121 | // rho[2] < 0 -> alpha = 0.0 |
| 122 | const double kAlpha = 0.0; |
| 123 | |
| 124 | // Thus the expected value of the residual is |
| 125 | // residual[i] * sqrt(kRho[1]) / (1.0 - kAlpha). |
| 126 | const double kExpectedResidual = |
| 127 | residuals * sqrt(kRho[1]) / (1.0 - kAlpha); |
| 128 | |
| 129 | // The jacobian in this case will be scaled by |
| 130 | // sqrt(rho[1]) * (1 - alpha) * J. |
| 131 | const double kExpectedJacobian = sqrt(kRho[1]) * |
| 132 | (1.0 - kAlpha) * jacobian; |
| 133 | |
| 134 | Corrector c(sq_norm, kRho); |
| 135 | c.CorrectJacobian(1, 1, &residuals, &jacobian); |
| 136 | c.CorrectResiduals(1, &residuals); |
| 137 | |
| 138 | ASSERT_NEAR(residuals, kExpectedResidual, 1e-6); |
| 139 | ASSERT_NEAR(kExpectedJacobian, jacobian, 1e-6); |
| 140 | } |
| 141 | |
| 142 | // Test that the corrected multidimensional residual and jacobians |
| 143 | // match the expected values and the resulting modified normal |
| 144 | // equations match the robustified gauss newton approximation. |
| 145 | TEST(Corrector, MultidimensionalGaussNewtonApproximation) { |
| 146 | double residuals[3]; |
| 147 | double jacobian[2 * 3]; |
| 148 | double rho[3]; |
| 149 | |
| 150 | // Eigen matrix references for linear algebra. |
| 151 | MatrixRef jac(jacobian, 3, 2); |
| 152 | VectorRef res(residuals, 3); |
| 153 | |
| 154 | // Ground truth values of the modified jacobian and residuals. |
| 155 | Matrix g_jac(3, 2); |
| 156 | Vector g_res(3); |
| 157 | |
| 158 | // Ground truth values of the robustified Gauss-Newton |
| 159 | // approximation. |
| 160 | Matrix g_hess(2, 2); |
| 161 | Vector g_grad(2); |
| 162 | |
| 163 | // Corrected hessian and gradient implied by the modified jacobian |
| 164 | // and hessians. |
| 165 | Matrix c_hess(2, 2); |
| 166 | Vector c_grad(2); |
| 167 | |
| 168 | srand(5); |
| 169 | for (int iter = 0; iter < 10000; ++iter) { |
| 170 | // Initialize the jacobian and residual. |
| 171 | for (int i = 0; i < 2 * 3; ++i) |
| 172 | jacobian[i] = RandDouble(); |
| 173 | for (int i = 0; i < 3; ++i) |
| 174 | residuals[i] = RandDouble(); |
| 175 | |
| 176 | const double sq_norm = res.dot(res); |
| 177 | |
| 178 | rho[0] = sq_norm; |
| 179 | rho[1] = RandDouble(); |
| 180 | rho[2] = 2.0 * RandDouble() - 1.0; |
| 181 | |
| 182 | // If rho[2] > 0, then the curvature correction to the correction |
| 183 | // and the gauss newton approximation will match. Otherwise, we |
| 184 | // will clamp alpha to 0. |
| 185 | |
| 186 | const double kD = 1 + 2 * rho[2] / rho[1] * sq_norm; |
| 187 | const double kAlpha = (rho[2] > 0.0) ? 1 - sqrt(kD) : 0.0; |
| 188 | |
| 189 | // Ground truth values. |
| 190 | g_res = sqrt(rho[1]) / (1.0 - kAlpha) * res; |
| 191 | g_jac = sqrt(rho[1]) * (jac - kAlpha / sq_norm * |
| 192 | res * res.transpose() * jac); |
| 193 | |
| 194 | g_grad = rho[1] * jac.transpose() * res; |
| 195 | g_hess = rho[1] * jac.transpose() * jac + |
| 196 | 2.0 * rho[2] * jac.transpose() * res * res.transpose() * jac; |
| 197 | |
| 198 | Corrector c(sq_norm, rho); |
| 199 | c.CorrectJacobian(3, 2, residuals, jacobian); |
| 200 | c.CorrectResiduals(3, residuals); |
| 201 | |
| 202 | // Corrected gradient and hessian. |
| 203 | c_grad = jac.transpose() * res; |
| 204 | c_hess = jac.transpose() * jac; |
| 205 | |
| 206 | ASSERT_NEAR((g_res - res).norm(), 0.0, 1e-10); |
| 207 | ASSERT_NEAR((g_jac - jac).norm(), 0.0, 1e-10); |
| 208 | |
| 209 | ASSERT_NEAR((g_grad - c_grad).norm(), 0.0, 1e-10); |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | TEST(Corrector, MultidimensionalGaussNewtonApproximationZeroResidual) { |
| 214 | double residuals[3]; |
| 215 | double jacobian[2 * 3]; |
| 216 | double rho[3]; |
| 217 | |
| 218 | // Eigen matrix references for linear algebra. |
| 219 | MatrixRef jac(jacobian, 3, 2); |
| 220 | VectorRef res(residuals, 3); |
| 221 | |
| 222 | // Ground truth values of the modified jacobian and residuals. |
| 223 | Matrix g_jac(3, 2); |
| 224 | Vector g_res(3); |
| 225 | |
| 226 | // Ground truth values of the robustified Gauss-Newton |
| 227 | // approximation. |
| 228 | Matrix g_hess(2, 2); |
| 229 | Vector g_grad(2); |
| 230 | |
| 231 | // Corrected hessian and gradient implied by the modified jacobian |
| 232 | // and hessians. |
| 233 | Matrix c_hess(2, 2); |
| 234 | Vector c_grad(2); |
| 235 | |
| 236 | srand(5); |
| 237 | for (int iter = 0; iter < 10000; ++iter) { |
| 238 | // Initialize the jacobian. |
| 239 | for (int i = 0; i < 2 * 3; ++i) |
| 240 | jacobian[i] = RandDouble(); |
| 241 | |
| 242 | // Zero residuals |
| 243 | res.setZero(); |
| 244 | |
| 245 | const double sq_norm = res.dot(res); |
| 246 | |
| 247 | rho[0] = sq_norm; |
| 248 | rho[1] = RandDouble(); |
| 249 | rho[2] = 2 * RandDouble() - 1.0; |
| 250 | |
| 251 | // Ground truth values. |
| 252 | g_res = sqrt(rho[1]) * res; |
| 253 | g_jac = sqrt(rho[1]) * jac; |
| 254 | |
| 255 | g_grad = rho[1] * jac.transpose() * res; |
| 256 | g_hess = rho[1] * jac.transpose() * jac + |
| 257 | 2.0 * rho[2] * jac.transpose() * res * res.transpose() * jac; |
| 258 | |
| 259 | Corrector c(sq_norm, rho); |
| 260 | c.CorrectJacobian(3, 2, residuals, jacobian); |
| 261 | c.CorrectResiduals(3, residuals); |
| 262 | |
| 263 | // Corrected gradient and hessian. |
| 264 | c_grad = jac.transpose() * res; |
| 265 | c_hess = jac.transpose() * jac; |
| 266 | |
| 267 | ASSERT_NEAR((g_res - res).norm(), 0.0, 1e-10); |
| 268 | ASSERT_NEAR((g_jac - jac).norm(), 0.0, 1e-10); |
| 269 | |
| 270 | ASSERT_NEAR((g_grad - c_grad).norm(), 0.0, 1e-10); |
| 271 | ASSERT_NEAR((g_hess - c_hess).norm(), 0.0, 1e-10); |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | } // namespace internal |
| 276 | } // namespace ceres |