Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/normal_prior.h" |
| 32 | |
| 33 | #include <cstddef> |
| 34 | |
| 35 | #include "gtest/gtest.h" |
| 36 | #include "ceres/internal/eigen.h" |
| 37 | #include "ceres/random.h" |
| 38 | |
| 39 | namespace ceres { |
| 40 | namespace internal { |
| 41 | |
| 42 | void RandomVector(Vector* v) { |
| 43 | for (int r = 0; r < v->rows(); ++r) |
| 44 | (*v)[r] = 2 * RandDouble() - 1; |
| 45 | } |
| 46 | |
| 47 | void RandomMatrix(Matrix* m) { |
| 48 | for (int r = 0; r < m->rows(); ++r) { |
| 49 | for (int c = 0; c < m->cols(); ++c) { |
| 50 | (*m)(r, c) = 2 * RandDouble() - 1; |
| 51 | } |
| 52 | } |
| 53 | } |
| 54 | |
| 55 | TEST(NormalPriorTest, ResidualAtRandomPosition) { |
| 56 | srand(5); |
| 57 | |
| 58 | for (int num_rows = 1; num_rows < 5; ++num_rows) { |
| 59 | for (int num_cols = 1; num_cols < 5; ++num_cols) { |
| 60 | Vector b(num_cols); |
| 61 | RandomVector(&b); |
| 62 | |
| 63 | Matrix A(num_rows, num_cols); |
| 64 | RandomMatrix(&A); |
| 65 | |
| 66 | double * x = new double[num_cols]; |
| 67 | for (int i = 0; i < num_cols; ++i) |
| 68 | x[i] = 2 * RandDouble() - 1; |
| 69 | |
| 70 | double * jacobian = new double[num_rows * num_cols]; |
| 71 | Vector residuals(num_rows); |
| 72 | |
| 73 | NormalPrior prior(A, b); |
| 74 | prior.Evaluate(&x, residuals.data(), &jacobian); |
| 75 | |
| 76 | // Compare the norm of the residual |
| 77 | double residual_diff_norm = |
| 78 | (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm(); |
| 79 | EXPECT_NEAR(residual_diff_norm, 0, 1e-10); |
| 80 | |
| 81 | // Compare the jacobians |
| 82 | MatrixRef J(jacobian, num_rows, num_cols); |
| 83 | double jacobian_diff_norm = (J - A).norm(); |
| 84 | EXPECT_NEAR(jacobian_diff_norm, 0.0, 1e-10); |
| 85 | |
| 86 | delete []x; |
| 87 | delete []jacobian; |
| 88 | } |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | TEST(NormalPriorTest, ResidualAtRandomPositionNullJacobians) { |
| 93 | srand(5); |
| 94 | |
| 95 | for (int num_rows = 1; num_rows < 5; ++num_rows) { |
| 96 | for (int num_cols = 1; num_cols < 5; ++num_cols) { |
| 97 | Vector b(num_cols); |
| 98 | RandomVector(&b); |
| 99 | |
| 100 | Matrix A(num_rows, num_cols); |
| 101 | RandomMatrix(&A); |
| 102 | |
| 103 | double * x = new double[num_cols]; |
| 104 | for (int i = 0; i < num_cols; ++i) |
| 105 | x[i] = 2 * RandDouble() - 1; |
| 106 | |
| 107 | double* jacobians[1]; |
| 108 | jacobians[0] = NULL; |
| 109 | |
| 110 | Vector residuals(num_rows); |
| 111 | |
| 112 | NormalPrior prior(A, b); |
| 113 | prior.Evaluate(&x, residuals.data(), jacobians); |
| 114 | |
| 115 | // Compare the norm of the residual |
| 116 | double residual_diff_norm = |
| 117 | (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm(); |
| 118 | EXPECT_NEAR(residual_diff_norm, 0, 1e-10); |
| 119 | |
| 120 | prior.Evaluate(&x, residuals.data(), NULL); |
| 121 | // Compare the norm of the residual |
| 122 | residual_diff_norm = |
| 123 | (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm(); |
| 124 | EXPECT_NEAR(residual_diff_norm, 0, 1e-10); |
| 125 | |
| 126 | |
| 127 | delete []x; |
| 128 | } |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | } // namespace internal |
| 133 | } // namespace ceres |