Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #ifndef CERES_NO_SUITESPARSE |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 32 | #include "ceres/suitesparse.h" |
| 33 | |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame^] | 34 | #include <vector> |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 35 | #include "cholmod.h" |
| 36 | #include "ceres/compressed_row_sparse_matrix.h" |
| 37 | #include "ceres/triplet_sparse_matrix.h" |
| 38 | namespace ceres { |
| 39 | namespace internal { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 40 | cholmod_sparse* SuiteSparse::CreateSparseMatrix(TripletSparseMatrix* A) { |
| 41 | cholmod_triplet triplet; |
| 42 | |
| 43 | triplet.nrow = A->num_rows(); |
| 44 | triplet.ncol = A->num_cols(); |
| 45 | triplet.nzmax = A->max_num_nonzeros(); |
| 46 | triplet.nnz = A->num_nonzeros(); |
| 47 | triplet.i = reinterpret_cast<void*>(A->mutable_rows()); |
| 48 | triplet.j = reinterpret_cast<void*>(A->mutable_cols()); |
| 49 | triplet.x = reinterpret_cast<void*>(A->mutable_values()); |
| 50 | triplet.stype = 0; // Matrix is not symmetric. |
| 51 | triplet.itype = CHOLMOD_INT; |
| 52 | triplet.xtype = CHOLMOD_REAL; |
| 53 | triplet.dtype = CHOLMOD_DOUBLE; |
| 54 | |
| 55 | return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_); |
| 56 | } |
| 57 | |
| 58 | |
| 59 | cholmod_sparse* SuiteSparse::CreateSparseMatrixTranspose( |
| 60 | TripletSparseMatrix* A) { |
| 61 | cholmod_triplet triplet; |
| 62 | |
| 63 | triplet.ncol = A->num_rows(); // swap row and columns |
| 64 | triplet.nrow = A->num_cols(); |
| 65 | triplet.nzmax = A->max_num_nonzeros(); |
| 66 | triplet.nnz = A->num_nonzeros(); |
| 67 | |
| 68 | // swap rows and columns |
| 69 | triplet.j = reinterpret_cast<void*>(A->mutable_rows()); |
| 70 | triplet.i = reinterpret_cast<void*>(A->mutable_cols()); |
| 71 | triplet.x = reinterpret_cast<void*>(A->mutable_values()); |
| 72 | triplet.stype = 0; // Matrix is not symmetric. |
| 73 | triplet.itype = CHOLMOD_INT; |
| 74 | triplet.xtype = CHOLMOD_REAL; |
| 75 | triplet.dtype = CHOLMOD_DOUBLE; |
| 76 | |
| 77 | return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_); |
| 78 | } |
| 79 | |
| 80 | cholmod_sparse* SuiteSparse::CreateSparseMatrixTransposeView( |
| 81 | CompressedRowSparseMatrix* A) { |
| 82 | cholmod_sparse* m = new cholmod_sparse_struct; |
| 83 | m->nrow = A->num_cols(); |
| 84 | m->ncol = A->num_rows(); |
| 85 | m->nzmax = A->num_nonzeros(); |
| 86 | |
| 87 | m->p = reinterpret_cast<void*>(A->mutable_rows()); |
| 88 | m->i = reinterpret_cast<void*>(A->mutable_cols()); |
| 89 | m->x = reinterpret_cast<void*>(A->mutable_values()); |
| 90 | |
| 91 | m->stype = 0; // Matrix is not symmetric. |
| 92 | m->itype = CHOLMOD_INT; |
| 93 | m->xtype = CHOLMOD_REAL; |
| 94 | m->dtype = CHOLMOD_DOUBLE; |
| 95 | m->sorted = 1; |
| 96 | m->packed = 1; |
| 97 | |
| 98 | return m; |
| 99 | } |
| 100 | |
| 101 | cholmod_dense* SuiteSparse::CreateDenseVector(const double* x, |
| 102 | int in_size, |
| 103 | int out_size) { |
| 104 | CHECK_LE(in_size, out_size); |
| 105 | cholmod_dense* v = cholmod_zeros(out_size, 1, CHOLMOD_REAL, &cc_); |
| 106 | if (x != NULL) { |
| 107 | memcpy(v->x, x, in_size*sizeof(*x)); |
| 108 | } |
| 109 | return v; |
| 110 | } |
| 111 | |
| 112 | cholmod_factor* SuiteSparse::AnalyzeCholesky(cholmod_sparse* A) { |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame^] | 113 | // Cholmod can try multiple re-ordering strategies to find a fill |
| 114 | // reducing ordering. Here we just tell it use AMD with automatic |
| 115 | // matrix dependence choice of supernodal versus simplicial |
| 116 | // factorization. |
| 117 | cc_.nmethods = 1; |
| 118 | cc_.method[0].ordering = CHOLMOD_AMD; |
| 119 | cc_.supernodal = CHOLMOD_AUTO; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 120 | cholmod_factor* factor = cholmod_analyze(A, &cc_); |
| 121 | CHECK_EQ(cc_.status, CHOLMOD_OK) |
| 122 | << "Cholmod symbolic analysis failed " << cc_.status; |
| 123 | CHECK_NOTNULL(factor); |
| 124 | return factor; |
| 125 | } |
| 126 | |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame^] | 127 | cholmod_factor* SuiteSparse::BlockAnalyzeCholesky( |
| 128 | cholmod_sparse* A, |
| 129 | const vector<int>& row_blocks, |
| 130 | const vector<int>& col_blocks) { |
| 131 | vector<int> ordering; |
| 132 | if (!BlockAMDOrdering(A, row_blocks, col_blocks, &ordering)) { |
| 133 | return NULL; |
| 134 | } |
| 135 | return AnalyzeCholeskyWithUserOrdering(A, ordering); |
| 136 | } |
| 137 | |
| 138 | cholmod_factor* SuiteSparse::AnalyzeCholeskyWithUserOrdering(cholmod_sparse* A, |
| 139 | const vector<int>& ordering) { |
| 140 | CHECK_EQ(ordering.size(), A->nrow); |
| 141 | cc_.nmethods = 1 ; |
| 142 | cc_.method[0].ordering = CHOLMOD_GIVEN; |
| 143 | cholmod_factor* factor = |
| 144 | cholmod_analyze_p(A, const_cast<int*>(&ordering[0]), NULL, 0, &cc_); |
| 145 | CHECK_EQ(cc_.status, CHOLMOD_OK) |
| 146 | << "Cholmod symbolic analysis failed " << cc_.status; |
| 147 | CHECK_NOTNULL(factor); |
| 148 | return factor; |
| 149 | } |
| 150 | |
| 151 | bool SuiteSparse::BlockAMDOrdering(const cholmod_sparse* A, |
| 152 | const vector<int>& row_blocks, |
| 153 | const vector<int>& col_blocks, |
| 154 | vector<int>* ordering) { |
| 155 | const int num_row_blocks = row_blocks.size(); |
| 156 | const int num_col_blocks = col_blocks.size(); |
| 157 | |
| 158 | // Arrays storing the compressed column structure of the matrix |
| 159 | // incoding the block sparsity of A. |
| 160 | vector<int> block_cols; |
| 161 | vector<int> block_rows; |
| 162 | |
| 163 | ScalarMatrixToBlockMatrix(A, |
| 164 | row_blocks, |
| 165 | col_blocks, |
| 166 | &block_rows, |
| 167 | &block_cols); |
| 168 | |
| 169 | cholmod_sparse_struct block_matrix; |
| 170 | block_matrix.nrow = num_row_blocks; |
| 171 | block_matrix.ncol = num_col_blocks; |
| 172 | block_matrix.nzmax = block_rows.size(); |
| 173 | block_matrix.p = reinterpret_cast<void*>(&block_cols[0]); |
| 174 | block_matrix.i = reinterpret_cast<void*>(&block_rows[0]); |
| 175 | block_matrix.x = NULL; |
| 176 | block_matrix.stype = A->stype; |
| 177 | block_matrix.itype = CHOLMOD_INT; |
| 178 | block_matrix.xtype = CHOLMOD_PATTERN; |
| 179 | block_matrix.dtype = CHOLMOD_DOUBLE; |
| 180 | block_matrix.sorted = 1; |
| 181 | block_matrix.packed = 1; |
| 182 | |
| 183 | vector<int> block_ordering(num_row_blocks); |
| 184 | if (!cholmod_amd(&block_matrix, NULL, 0, &block_ordering[0], &cc_)) { |
| 185 | return false; |
| 186 | } |
| 187 | |
| 188 | BlockOrderingToScalarOrdering(row_blocks, block_ordering, ordering); |
| 189 | return true; |
| 190 | } |
| 191 | |
| 192 | void SuiteSparse::ScalarMatrixToBlockMatrix(const cholmod_sparse* A, |
| 193 | const vector<int>& row_blocks, |
| 194 | const vector<int>& col_blocks, |
| 195 | vector<int>* block_rows, |
| 196 | vector<int>* block_cols) { |
| 197 | CHECK_NOTNULL(block_rows)->clear(); |
| 198 | CHECK_NOTNULL(block_cols)->clear(); |
| 199 | const int num_row_blocks = row_blocks.size(); |
| 200 | const int num_col_blocks = col_blocks.size(); |
| 201 | |
| 202 | vector<int> row_block_starts(num_row_blocks); |
| 203 | for (int i = 0, cursor = 0; i < num_row_blocks; ++i) { |
| 204 | row_block_starts[i] = cursor; |
| 205 | cursor += row_blocks[i]; |
| 206 | } |
| 207 | |
| 208 | // The reinterpret_cast is needed here because CHOLMOD stores arrays |
| 209 | // as void*. |
| 210 | const int* scalar_cols = reinterpret_cast<const int*>(A->p); |
| 211 | const int* scalar_rows = reinterpret_cast<const int*>(A->i); |
| 212 | |
| 213 | // This loop extracts the block sparsity of the scalar sparse matrix |
| 214 | // A. It does so by iterating over the columns, but only considering |
| 215 | // the columns corresponding to the first element of each column |
| 216 | // block. Within each column, the inner loop iterates over the rows, |
| 217 | // and detects the presence of a row block by checking for the |
| 218 | // presence of a non-zero entry corresponding to its first element. |
| 219 | block_cols->push_back(0); |
| 220 | int c = 0; |
| 221 | for (int col_block = 0; col_block < num_col_blocks; ++col_block) { |
| 222 | int column_size = 0; |
| 223 | for (int idx = scalar_cols[c]; idx < scalar_cols[c + 1]; ++idx) { |
| 224 | vector<int>::const_iterator it = lower_bound(row_block_starts.begin(), |
| 225 | row_block_starts.end(), |
| 226 | scalar_rows[idx]); |
| 227 | DCHECK(it != row_block_starts.end()); |
| 228 | // Only consider the first row of each row block. |
| 229 | if (*it != scalar_rows[idx]) { |
| 230 | continue; |
| 231 | } |
| 232 | |
| 233 | block_rows->push_back(it - row_block_starts.begin()); |
| 234 | ++column_size; |
| 235 | } |
| 236 | block_cols->push_back(block_cols->back() + column_size); |
| 237 | c += col_blocks[col_block]; |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | void SuiteSparse::BlockOrderingToScalarOrdering( |
| 242 | const vector<int>& blocks, |
| 243 | const vector<int>& block_ordering, |
| 244 | vector<int>* scalar_ordering) { |
| 245 | CHECK_EQ(blocks.size(), block_ordering.size()); |
| 246 | const int num_blocks = blocks.size(); |
| 247 | |
| 248 | // block_starts = [0, block1, block1 + block2 ..] |
| 249 | vector<int> block_starts(num_blocks); |
| 250 | for (int i = 0, cursor = 0; i < num_blocks ; ++i) { |
| 251 | block_starts[i] = cursor; |
| 252 | cursor += blocks[i]; |
| 253 | } |
| 254 | |
| 255 | scalar_ordering->resize(block_starts.back() + blocks.back()); |
| 256 | int cursor = 0; |
| 257 | for (int i = 0; i < num_blocks; ++i) { |
| 258 | const int block_id = block_ordering[i]; |
| 259 | const int block_size = blocks[block_id]; |
| 260 | int block_position = block_starts[block_id]; |
| 261 | for (int j = 0; j < block_size; ++j) { |
| 262 | (*scalar_ordering)[cursor++] = block_position++; |
| 263 | } |
| 264 | } |
| 265 | } |
| 266 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 267 | bool SuiteSparse::Cholesky(cholmod_sparse* A, cholmod_factor* L) { |
| 268 | CHECK_NOTNULL(A); |
| 269 | CHECK_NOTNULL(L); |
| 270 | |
| 271 | cc_.quick_return_if_not_posdef = 1; |
| 272 | int status = cholmod_factorize(A, L, &cc_); |
| 273 | switch (cc_.status) { |
| 274 | case CHOLMOD_NOT_INSTALLED: |
| 275 | LOG(WARNING) << "Cholmod failure: method not installed."; |
| 276 | return false; |
| 277 | case CHOLMOD_OUT_OF_MEMORY: |
| 278 | LOG(WARNING) << "Cholmod failure: out of memory."; |
| 279 | return false; |
| 280 | case CHOLMOD_TOO_LARGE: |
| 281 | LOG(WARNING) << "Cholmod failure: integer overflow occured."; |
| 282 | return false; |
| 283 | case CHOLMOD_INVALID: |
| 284 | LOG(WARNING) << "Cholmod failure: invalid input."; |
| 285 | return false; |
| 286 | case CHOLMOD_NOT_POSDEF: |
| 287 | // TODO(sameeragarwal): These two warnings require more |
| 288 | // sophisticated handling going forward. For now we will be |
| 289 | // strict and treat them as failures. |
| 290 | LOG(WARNING) << "Cholmod warning: matrix not positive definite."; |
| 291 | return false; |
| 292 | case CHOLMOD_DSMALL: |
| 293 | LOG(WARNING) << "Cholmod warning: D for LDL' or diag(L) or " |
| 294 | << "LL' has tiny absolute value."; |
| 295 | return false; |
| 296 | case CHOLMOD_OK: |
| 297 | if (status != 0) { |
| 298 | return true; |
| 299 | } |
| 300 | LOG(WARNING) << "Cholmod failure: cholmod_factorize returned zero " |
| 301 | << "but cholmod_common::status is CHOLMOD_OK." |
| 302 | << "Please report this to ceres-solver@googlegroups.com."; |
| 303 | return false; |
| 304 | default: |
| 305 | LOG(WARNING) << "Unknown cholmod return code. " |
| 306 | << "Please report this to ceres-solver@googlegroups.com."; |
| 307 | return false; |
| 308 | } |
| 309 | return false; |
| 310 | } |
| 311 | |
| 312 | cholmod_dense* SuiteSparse::Solve(cholmod_factor* L, |
| 313 | cholmod_dense* b) { |
| 314 | if (cc_.status != CHOLMOD_OK) { |
| 315 | LOG(WARNING) << "CHOLMOD status NOT OK"; |
| 316 | return NULL; |
| 317 | } |
| 318 | |
| 319 | return cholmod_solve(CHOLMOD_A, L, b, &cc_); |
| 320 | } |
| 321 | |
| 322 | cholmod_dense* SuiteSparse::SolveCholesky(cholmod_sparse* A, |
| 323 | cholmod_factor* L, |
| 324 | cholmod_dense* b) { |
| 325 | CHECK_NOTNULL(A); |
| 326 | CHECK_NOTNULL(L); |
| 327 | CHECK_NOTNULL(b); |
| 328 | |
| 329 | if (Cholesky(A, L)) { |
| 330 | return Solve(L, b); |
| 331 | } |
| 332 | |
| 333 | return NULL; |
| 334 | } |
| 335 | |
| 336 | } // namespace internal |
| 337 | } // namespace ceres |
| 338 | |
| 339 | #endif // CERES_NO_SUITESPARSE |