Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // |
| 31 | // A simple C++ interface to the SuiteSparse and CHOLMOD libraries. |
| 32 | |
| 33 | #ifndef CERES_INTERNAL_SUITESPARSE_H_ |
| 34 | #define CERES_INTERNAL_SUITESPARSE_H_ |
| 35 | |
| 36 | #ifndef CERES_NO_SUITESPARSE |
| 37 | |
| 38 | #include <cstring> |
| 39 | #include <string> |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame^] | 40 | #include <vector> |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 41 | |
| 42 | #include <glog/logging.h> |
| 43 | #include "cholmod.h" |
| 44 | #include "ceres/internal/port.h" |
| 45 | |
| 46 | namespace ceres { |
| 47 | namespace internal { |
| 48 | |
| 49 | class CompressedRowSparseMatrix; |
| 50 | class TripletSparseMatrix; |
| 51 | |
| 52 | // The raw CHOLMOD and SuiteSparseQR libraries have a slightly |
| 53 | // cumbersome c like calling format. This object abstracts it away and |
| 54 | // provides the user with a simpler interface. The methods here cannot |
| 55 | // be static as a cholmod_common object serves as a global variable |
| 56 | // for all cholmod function calls. |
| 57 | class SuiteSparse { |
| 58 | public: |
| 59 | SuiteSparse() { cholmod_start(&cc_); } |
| 60 | ~SuiteSparse() { cholmod_finish(&cc_); } |
| 61 | |
| 62 | // Functions for building cholmod_sparse objects from sparse |
| 63 | // matrices stored in triplet form. The matrix A is not |
| 64 | // modifed. Called owns the result. |
| 65 | cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A); |
| 66 | |
| 67 | // This function works like CreateSparseMatrix, except that the |
| 68 | // return value corresponds to A' rather than A. |
| 69 | cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A); |
| 70 | |
| 71 | // Create a cholmod_sparse wrapper around the contents of A. This is |
| 72 | // a shallow object, which refers to the contents of A and does not |
| 73 | // use the SuiteSparse machinery to allocate memory, this object |
| 74 | // should be disposed off with a delete and not a call to Free as is |
| 75 | // the case for objects returned by CreateSparseMatrixTranspose. |
| 76 | cholmod_sparse* CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A); |
| 77 | |
| 78 | // Given a vector x, build a cholmod_dense vector of size out_size |
| 79 | // with the first in_size entries copied from x. If x is NULL, then |
| 80 | // an all zeros vector is returned. Caller owns the result. |
| 81 | cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size); |
| 82 | |
| 83 | // The matrix A is scaled using the matrix whose diagonal is the |
| 84 | // vector scale. mode describes how scaling is applied. Possible |
| 85 | // values are CHOLMOD_ROW for row scaling - diag(scale) * A, |
| 86 | // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM |
| 87 | // for symmetric scaling which scales both the rows and the columns |
| 88 | // - diag(scale) * A * diag(scale). |
| 89 | void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) { |
| 90 | cholmod_scale(scale, mode, A, &cc_); |
| 91 | } |
| 92 | |
| 93 | // Create and return a matrix m = A * A'. Caller owns the |
| 94 | // result. The matrix A is not modified. |
| 95 | cholmod_sparse* AATranspose(cholmod_sparse* A) { |
| 96 | cholmod_sparse*m = cholmod_aat(A, NULL, A->nrow, 1, &cc_); |
| 97 | m->stype = 1; // Pay attention to the upper triangular part. |
| 98 | return m; |
| 99 | } |
| 100 | |
| 101 | // y = alpha * A * x + beta * y. Only y is modified. |
| 102 | void SparseDenseMultiply(cholmod_sparse* A, double alpha, double beta, |
| 103 | cholmod_dense* x, cholmod_dense* y) { |
| 104 | double alpha_[2] = {alpha, 0}; |
| 105 | double beta_[2] = {beta, 0}; |
| 106 | cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_); |
| 107 | } |
| 108 | |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame^] | 109 | // Find an ordering of A or AA' (if A is unsymmetric) that minimizes |
| 110 | // the fill-in in the Cholesky factorization of the corresponding |
| 111 | // matrix. This is done by using the AMD algorithm. |
| 112 | // |
| 113 | // Using this ordering, the symbolic Cholesky factorization of A (or |
| 114 | // AA') is computed and returned. |
| 115 | // |
| 116 | // A is not modified, only the pattern of non-zeros of A is used, |
| 117 | // the actual numerical values in A are of no consequence. |
| 118 | // |
| 119 | // Caller owns the result. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 120 | cholmod_factor* AnalyzeCholesky(cholmod_sparse* A); |
| 121 | |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame^] | 122 | cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A, |
| 123 | const vector<int>& row_blocks, |
| 124 | const vector<int>& col_blocks); |
| 125 | |
| 126 | // If A is symmetric, then compute the symbolic Cholesky |
| 127 | // factorization of A(ordering, ordering). If A is unsymmetric, then |
| 128 | // compute the symbolic factorization of |
| 129 | // A(ordering,:) A(ordering,:)'. |
| 130 | // |
| 131 | // A is not modified, only the pattern of non-zeros of A is used, |
| 132 | // the actual numerical values in A are of no consequence. |
| 133 | // |
| 134 | // Caller owns the result. |
| 135 | cholmod_factor* AnalyzeCholeskyWithUserOrdering(cholmod_sparse* A, |
| 136 | const vector<int>& ordering); |
| 137 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 138 | // Use the symbolic factorization in L, to find the numerical |
| 139 | // factorization for the matrix A or AA^T. Return true if |
| 140 | // successful, false otherwise. L contains the numeric factorization |
| 141 | // on return. |
| 142 | bool Cholesky(cholmod_sparse* A, cholmod_factor* L); |
| 143 | |
| 144 | // Given a Cholesky factorization of a matrix A = LL^T, solve the |
| 145 | // linear system Ax = b, and return the result. If the Solve fails |
| 146 | // NULL is returned. Caller owns the result. |
| 147 | cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b); |
| 148 | |
| 149 | // Combine the calls to Cholesky and Solve into a single call. If |
| 150 | // the cholesky factorization or the solve fails, return |
| 151 | // NULL. Caller owns the result. |
| 152 | cholmod_dense* SolveCholesky(cholmod_sparse* A, |
| 153 | cholmod_factor* L, |
| 154 | cholmod_dense* b); |
| 155 | |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame^] | 156 | // By virtue of the modeling layer in Ceres being block oriented, |
| 157 | // all the matrices used by Ceres are also block oriented. When |
| 158 | // doing sparse direct factorization of these matrices the |
| 159 | // fill-reducing ordering algorithms (in particular AMD) can either |
| 160 | // be run on the block or the scalar form of these matrices. The two |
| 161 | // SuiteSparse::AnalyzeCholesky methods allows the the client to |
| 162 | // compute the symbolic factorization of a matrix by either using |
| 163 | // AMD on the matrix or a user provided ordering of the rows. |
| 164 | // |
| 165 | // But since the underlying matrices are block oriented, it is worth |
| 166 | // running AMD on just the block structre of these matrices and then |
| 167 | // lifting these block orderings to a full scalar ordering. This |
| 168 | // preserves the block structure of the permuted matrix, and exposes |
| 169 | // more of the super-nodal structure of the matrix to the numerical |
| 170 | // factorization routines. |
| 171 | // |
| 172 | // Find the block oriented AMD ordering of a matrix A, whose row and |
| 173 | // column blocks are given by row_blocks, and col_blocks |
| 174 | // respectively. The matrix may or may not be symmetric. The entries |
| 175 | // of col_blocks do not need to sum to the number of columns in |
| 176 | // A. If this is the case, only the first sum(col_blocks) are used |
| 177 | // to compute the ordering. |
| 178 | bool BlockAMDOrdering(const cholmod_sparse* A, |
| 179 | const vector<int>& row_blocks, |
| 180 | const vector<int>& col_blocks, |
| 181 | vector<int>* ordering); |
| 182 | |
| 183 | // Given a set of blocks and a permutation of these blocks, compute |
| 184 | // the corresponding "scalar" ordering, where the scalar ordering of |
| 185 | // size sum(blocks). |
| 186 | static void BlockOrderingToScalarOrdering(const vector<int>& blocks, |
| 187 | const vector<int>& block_ordering, |
| 188 | vector<int>* scalar_ordering); |
| 189 | |
| 190 | // Extract the block sparsity pattern of the scalar sparse matrix |
| 191 | // A and return it in compressed column form. The compressed column |
| 192 | // form is stored in two vectors block_rows, and block_cols, which |
| 193 | // correspond to the row and column arrays in a compressed column sparse |
| 194 | // matrix. |
| 195 | // |
| 196 | // If c_ij is the block in the matrix A corresponding to row block i |
| 197 | // and column block j, then it is expected that A contains at least |
| 198 | // one non-zero entry corresponding to the top left entry of c_ij, |
| 199 | // as that entry is used to detect the presence of a non-zero c_ij. |
| 200 | static void ScalarMatrixToBlockMatrix(const cholmod_sparse* A, |
| 201 | const vector<int>& row_blocks, |
| 202 | const vector<int>& col_blocks, |
| 203 | vector<int>* block_rows, |
| 204 | vector<int>* block_cols); |
| 205 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 206 | void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); } |
| 207 | void Free(cholmod_dense* m) { cholmod_free_dense(&m, &cc_); } |
| 208 | void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); } |
| 209 | |
| 210 | void Print(cholmod_sparse* m, const string& name) { |
| 211 | cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_); |
| 212 | } |
| 213 | |
| 214 | void Print(cholmod_dense* m, const string& name) { |
| 215 | cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_); |
| 216 | } |
| 217 | |
| 218 | void Print(cholmod_triplet* m, const string& name) { |
| 219 | cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_); |
| 220 | } |
| 221 | |
| 222 | cholmod_common* mutable_cc() { return &cc_; } |
| 223 | |
| 224 | private: |
| 225 | cholmod_common cc_; |
| 226 | }; |
| 227 | |
| 228 | } // namespace internal |
| 229 | } // namespace ceres |
| 230 | |
| 231 | #endif // CERES_NO_SUITESPARSE |
| 232 | |
| 233 | #endif // CERES_INTERNAL_SUITESPARSE_H_ |