Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2013 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
Sameer Agarwal | 2f0d724 | 2013-01-18 13:11:32 -0800 | [diff] [blame] | 31 | #include "ceres/numeric_diff_test_utils.h" |
| 32 | |
| 33 | #include <algorithm> |
| 34 | #include <cmath> |
| 35 | #include "ceres/cost_function.h" |
| 36 | #include "ceres/internal/macros.h" |
| 37 | #include "ceres/test_util.h" |
| 38 | #include "ceres/types.h" |
| 39 | #include "gtest/gtest.h" |
| 40 | |
| 41 | |
| 42 | namespace ceres { |
| 43 | namespace internal { |
| 44 | |
| 45 | bool EasyFunctor::operator()(const double* x1, |
| 46 | const double* x2, |
| 47 | double* residuals) const { |
| 48 | residuals[0] = residuals[1] = residuals[2] = 0; |
| 49 | for (int i = 0; i < 5; ++i) { |
| 50 | residuals[0] += x1[i] * x2[i]; |
| 51 | residuals[2] += x2[i] * x2[i]; |
| 52 | } |
| 53 | residuals[1] = residuals[0] * residuals[0]; |
| 54 | return true; |
| 55 | } |
| 56 | |
| 57 | void EasyFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( |
| 58 | const CostFunction& cost_function, |
| 59 | NumericDiffMethod method) const { |
| 60 | double x1[] = { 1.0, 2.0, 3.0, 4.0, 5.0 }; |
| 61 | double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 }; |
| 62 | double *parameters[] = { &x1[0], &x2[0] }; |
| 63 | |
| 64 | double dydx1[15]; // 3 x 5, row major. |
| 65 | double dydx2[15]; // 3 x 5, row major. |
| 66 | double *jacobians[2] = { &dydx1[0], &dydx2[0] }; |
| 67 | |
| 68 | double residuals[3] = {-1e-100, -2e-100, -3e-100 }; |
| 69 | |
| 70 | ASSERT_TRUE(cost_function.Evaluate(¶meters[0], |
| 71 | &residuals[0], |
| 72 | &jacobians[0])); |
| 73 | |
| 74 | EXPECT_EQ(residuals[0], 67); |
| 75 | EXPECT_EQ(residuals[1], 4489); |
| 76 | EXPECT_EQ(residuals[2], 213); |
| 77 | |
| 78 | const double tolerance = (method == CENTRAL)? 3e-9 : 2e-5; |
| 79 | |
| 80 | for (int i = 0; i < 5; ++i) { |
| 81 | ExpectClose(x2[i], dydx1[5 * 0 + i], tolerance); // y1 |
| 82 | ExpectClose(x1[i], dydx2[5 * 0 + i], tolerance); |
| 83 | ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], tolerance); // y2 |
| 84 | ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], tolerance); |
| 85 | ExpectClose(0.0, dydx1[5 * 2 + i], tolerance); // y3 |
| 86 | ExpectClose(2 * x2[i], dydx2[5 * 2 + i], tolerance); |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | bool TranscendentalFunctor::operator()(const double* x1, |
| 91 | const double* x2, |
| 92 | double* residuals) const { |
| 93 | double x1x2 = 0; |
| 94 | for (int i = 0; i < 5; ++i) { |
| 95 | x1x2 += x1[i] * x2[i]; |
| 96 | } |
| 97 | residuals[0] = sin(x1x2); |
| 98 | residuals[1] = exp(-x1x2 / 10); |
| 99 | return true; |
| 100 | } |
| 101 | |
| 102 | void TranscendentalFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( |
| 103 | const CostFunction& cost_function, |
| 104 | NumericDiffMethod method) const { |
| 105 | struct { |
| 106 | double x1[5]; |
| 107 | double x2[5]; |
| 108 | } kTests[] = { |
| 109 | { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // No zeros. |
| 110 | { 9.0, 9.0, 5.0, 5.0, 1.0 }, |
| 111 | }, |
| 112 | { { 0.0, 2.0, 3.0, 0.0, 5.0 }, // Some zeros x1. |
| 113 | { 9.0, 9.0, 5.0, 5.0, 1.0 }, |
| 114 | }, |
| 115 | { { 1.0, 2.0, 3.0, 1.0, 5.0 }, // Some zeros x2. |
| 116 | { 0.0, 9.0, 0.0, 5.0, 0.0 }, |
| 117 | }, |
| 118 | { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros x1. |
| 119 | { 9.0, 9.0, 5.0, 5.0, 1.0 }, |
| 120 | }, |
| 121 | { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // All zeros x2. |
| 122 | { 0.0, 0.0, 0.0, 0.0, 0.0 }, |
| 123 | }, |
| 124 | { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros. |
| 125 | { 0.0, 0.0, 0.0, 0.0, 0.0 }, |
| 126 | }, |
| 127 | }; |
| 128 | |
| 129 | for (int k = 0; k < CERES_ARRAYSIZE(kTests); ++k) { |
| 130 | double *x1 = &(kTests[k].x1[0]); |
| 131 | double *x2 = &(kTests[k].x2[0]); |
| 132 | double *parameters[] = { x1, x2 }; |
| 133 | |
| 134 | double dydx1[10]; |
| 135 | double dydx2[10]; |
| 136 | double *jacobians[2] = { &dydx1[0], &dydx2[0] }; |
| 137 | |
| 138 | double residuals[2]; |
| 139 | |
| 140 | ASSERT_TRUE(cost_function.Evaluate(¶meters[0], |
| 141 | &residuals[0], |
| 142 | &jacobians[0])); |
| 143 | double x1x2 = 0; |
| 144 | for (int i = 0; i < 5; ++i) { |
| 145 | x1x2 += x1[i] * x2[i]; |
| 146 | } |
| 147 | |
| 148 | const double tolerance = (method == CENTRAL)? 3e-9 : 2e-5; |
| 149 | |
| 150 | for (int i = 0; i < 5; ++i) { |
| 151 | ExpectClose( x2[i] * cos(x1x2), dydx1[5 * 0 + i], tolerance); |
| 152 | ExpectClose( x1[i] * cos(x1x2), dydx2[5 * 0 + i], tolerance); |
| 153 | ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], tolerance); |
| 154 | ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], tolerance); |
| 155 | } |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | } // namespace internal |
| 160 | } // namespace ceres |