Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // |
| 31 | // An example program that minimizes Powell's singular function. |
| 32 | // |
| 33 | // F = 1/2 (f1^2 + f2^2 + f3^2 + f4^2) |
| 34 | // |
| 35 | // f1 = x1 + 10*x2; |
| 36 | // f2 = sqrt(5) * (x3 - x4) |
| 37 | // f3 = (x2 - 2*x3)^2 |
| 38 | // f4 = sqrt(10) * (x1 - x4)^2 |
| 39 | // |
| 40 | // The starting values are x1 = 3, x2 = -1, x3 = 0, x4 = 1. |
| 41 | // The minimum is 0 at (x1, x2, x3, x4) = 0. |
| 42 | // |
| 43 | // From: Testing Unconstrained Optimization Software by Jorge J. More, Burton S. |
| 44 | // Garbow and Kenneth E. Hillstrom in ACM Transactions on Mathematical Software, |
| 45 | // Vol 7(1), March 1981. |
| 46 | |
| 47 | #include <vector> |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 48 | #include "ceres/ceres.h" |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 49 | #include "gflags/gflags.h" |
| 50 | #include "glog/logging.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 51 | |
| 52 | using ceres::AutoDiffCostFunction; |
| 53 | using ceres::CostFunction; |
| 54 | using ceres::Problem; |
| 55 | using ceres::Solver; |
| 56 | using ceres::Solve; |
| 57 | |
| 58 | class F1 { |
| 59 | public: |
| 60 | template <typename T> bool operator()(const T* const x1, |
| 61 | const T* const x2, |
| 62 | T* residual) const { |
| 63 | // f1 = x1 + 10 * x2; |
| 64 | residual[0] = x1[0] + T(10.0) * x2[0]; |
| 65 | return true; |
| 66 | } |
| 67 | }; |
| 68 | |
| 69 | class F2 { |
| 70 | public: |
| 71 | template <typename T> bool operator()(const T* const x3, |
| 72 | const T* const x4, |
| 73 | T* residual) const { |
| 74 | // f2 = sqrt(5) (x3 - x4) |
| 75 | residual[0] = T(sqrt(5.0)) * (x3[0] - x4[0]); |
| 76 | return true; |
| 77 | } |
| 78 | }; |
| 79 | |
| 80 | class F3 { |
| 81 | public: |
| 82 | template <typename T> bool operator()(const T* const x2, |
| 83 | const T* const x4, |
| 84 | T* residual) const { |
| 85 | // f3 = (x2 - 2 x3)^2 |
| 86 | residual[0] = (x2[0] - T(2.0) * x4[0]) * (x2[0] - T(2.0) * x4[0]); |
| 87 | return true; |
| 88 | } |
| 89 | }; |
| 90 | |
| 91 | class F4 { |
| 92 | public: |
| 93 | template <typename T> bool operator()(const T* const x1, |
| 94 | const T* const x4, |
| 95 | T* residual) const { |
| 96 | // f4 = sqrt(10) (x1 - x4)^2 |
| 97 | residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]); |
| 98 | return true; |
| 99 | } |
| 100 | }; |
| 101 | |
| 102 | int main(int argc, char** argv) { |
| 103 | google::ParseCommandLineFlags(&argc, &argv, true); |
| 104 | google::InitGoogleLogging(argv[0]); |
| 105 | |
| 106 | double x1 = 3.0; |
| 107 | double x2 = -1.0; |
| 108 | double x3 = 0.0; |
| 109 | double x4 = 1.0; |
| 110 | |
| 111 | Problem problem; |
| 112 | // Add residual terms to the problem using the using the autodiff |
| 113 | // wrapper to get the derivatives automatically. The parameters, x1 through |
| 114 | // x4, are modified in place. |
| 115 | problem.AddResidualBlock(new AutoDiffCostFunction<F1, 1, 1, 1>(new F1), |
| 116 | NULL, |
| 117 | &x1, &x2); |
| 118 | problem.AddResidualBlock(new AutoDiffCostFunction<F2, 1, 1, 1>(new F2), |
| 119 | NULL, |
| 120 | &x3, &x4); |
| 121 | problem.AddResidualBlock(new AutoDiffCostFunction<F3, 1, 1, 1>(new F3), |
| 122 | NULL, |
| 123 | &x2, &x3); |
| 124 | problem.AddResidualBlock(new AutoDiffCostFunction<F4, 1, 1, 1>(new F4), |
| 125 | NULL, |
| 126 | &x1, &x4); |
| 127 | |
| 128 | // Run the solver! |
| 129 | Solver::Options options; |
| 130 | options.max_num_iterations = 30; |
| 131 | options.linear_solver_type = ceres::DENSE_QR; |
| 132 | options.minimizer_progress_to_stdout = true; |
| 133 | |
| 134 | Solver::Summary summary; |
| 135 | |
| 136 | std::cout << "Initial x1 = " << x1 |
| 137 | << ", x2 = " << x2 |
| 138 | << ", x3 = " << x3 |
| 139 | << ", x4 = " << x4 |
| 140 | << "\n"; |
| 141 | |
| 142 | Solve(options, &problem, &summary); |
| 143 | |
| 144 | std::cout << summary.BriefReport() << "\n"; |
| 145 | std::cout << "Final x1 = " << x1 |
| 146 | << ", x2 = " << x2 |
| 147 | << ", x3 = " << x3 |
| 148 | << ", x4 = " << x4 |
| 149 | << "\n"; |
| 150 | return 0; |
| 151 | } |