blob: 6cd3611ac0672cf4a3f3f0479e4deb42322c470c [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// An example program that minimizes Powell's singular function.
32//
33// F = 1/2 (f1^2 + f2^2 + f3^2 + f4^2)
34//
35// f1 = x1 + 10*x2;
36// f2 = sqrt(5) * (x3 - x4)
37// f3 = (x2 - 2*x3)^2
38// f4 = sqrt(10) * (x1 - x4)^2
39//
40// The starting values are x1 = 3, x2 = -1, x3 = 0, x4 = 1.
41// The minimum is 0 at (x1, x2, x3, x4) = 0.
42//
43// From: Testing Unconstrained Optimization Software by Jorge J. More, Burton S.
44// Garbow and Kenneth E. Hillstrom in ACM Transactions on Mathematical Software,
45// Vol 7(1), March 1981.
46
47#include <vector>
Keir Mierle8ebb0732012-04-30 23:09:08 -070048#include "ceres/ceres.h"
Keir Mierleefe7ac62012-06-24 22:25:28 -070049#include "gflags/gflags.h"
50#include "glog/logging.h"
Keir Mierle8ebb0732012-04-30 23:09:08 -070051
52using ceres::AutoDiffCostFunction;
53using ceres::CostFunction;
54using ceres::Problem;
55using ceres::Solver;
56using ceres::Solve;
57
58class F1 {
59 public:
60 template <typename T> bool operator()(const T* const x1,
61 const T* const x2,
62 T* residual) const {
63 // f1 = x1 + 10 * x2;
64 residual[0] = x1[0] + T(10.0) * x2[0];
65 return true;
66 }
67};
68
69class F2 {
70 public:
71 template <typename T> bool operator()(const T* const x3,
72 const T* const x4,
73 T* residual) const {
74 // f2 = sqrt(5) (x3 - x4)
75 residual[0] = T(sqrt(5.0)) * (x3[0] - x4[0]);
76 return true;
77 }
78};
79
80class F3 {
81 public:
82 template <typename T> bool operator()(const T* const x2,
83 const T* const x4,
84 T* residual) const {
85 // f3 = (x2 - 2 x3)^2
86 residual[0] = (x2[0] - T(2.0) * x4[0]) * (x2[0] - T(2.0) * x4[0]);
87 return true;
88 }
89};
90
91class F4 {
92 public:
93 template <typename T> bool operator()(const T* const x1,
94 const T* const x4,
95 T* residual) const {
96 // f4 = sqrt(10) (x1 - x4)^2
97 residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
98 return true;
99 }
100};
101
102int main(int argc, char** argv) {
103 google::ParseCommandLineFlags(&argc, &argv, true);
104 google::InitGoogleLogging(argv[0]);
105
106 double x1 = 3.0;
107 double x2 = -1.0;
108 double x3 = 0.0;
109 double x4 = 1.0;
110
111 Problem problem;
112 // Add residual terms to the problem using the using the autodiff
113 // wrapper to get the derivatives automatically. The parameters, x1 through
114 // x4, are modified in place.
115 problem.AddResidualBlock(new AutoDiffCostFunction<F1, 1, 1, 1>(new F1),
116 NULL,
117 &x1, &x2);
118 problem.AddResidualBlock(new AutoDiffCostFunction<F2, 1, 1, 1>(new F2),
119 NULL,
120 &x3, &x4);
121 problem.AddResidualBlock(new AutoDiffCostFunction<F3, 1, 1, 1>(new F3),
122 NULL,
123 &x2, &x3);
124 problem.AddResidualBlock(new AutoDiffCostFunction<F4, 1, 1, 1>(new F4),
125 NULL,
126 &x1, &x4);
127
128 // Run the solver!
129 Solver::Options options;
130 options.max_num_iterations = 30;
131 options.linear_solver_type = ceres::DENSE_QR;
132 options.minimizer_progress_to_stdout = true;
133
134 Solver::Summary summary;
135
136 std::cout << "Initial x1 = " << x1
137 << ", x2 = " << x2
138 << ", x3 = " << x3
139 << ", x4 = " << x4
140 << "\n";
141
142 Solve(options, &problem, &summary);
143
144 std::cout << summary.BriefReport() << "\n";
145 std::cout << "Final x1 = " << x1
146 << ", x2 = " << x2
147 << ", x3 = " << x3
148 << ", x4 = " << x4
149 << "\n";
150 return 0;
151}