Sameer Agarwal | ea11704 | 2012-08-29 18:18:48 -0700 | [diff] [blame] | 1 | NIST/ITL StRD
|
| 2 | Dataset Name: Rat42 (Rat42.dat)
|
| 3 |
|
| 4 | File Format: ASCII
|
| 5 | Starting Values (lines 41 to 43)
|
| 6 | Certified Values (lines 41 to 48)
|
| 7 | Data (lines 61 to 69)
|
| 8 |
|
| 9 | Procedure: Nonlinear Least Squares Regression
|
| 10 |
|
| 11 | Description: This model and data are an example of fitting
|
| 12 | sigmoidal growth curves taken from Ratkowsky (1983).
|
| 13 | The response variable is pasture yield, and the
|
| 14 | predictor variable is growing time.
|
| 15 |
|
| 16 |
|
| 17 | Reference: Ratkowsky, D.A. (1983).
|
| 18 | Nonlinear Regression Modeling.
|
| 19 | New York, NY: Marcel Dekker, pp. 61 and 88.
|
| 20 |
|
| 21 |
|
| 22 |
|
| 23 |
|
| 24 |
|
| 25 | Data: 1 Response (y = pasture yield)
|
| 26 | 1 Predictor (x = growing time)
|
| 27 | 9 Observations
|
| 28 | Higher Level of Difficulty
|
| 29 | Observed Data
|
| 30 |
|
| 31 | Model: Exponential Class
|
| 32 | 3 Parameters (b1 to b3)
|
| 33 |
|
| 34 | y = b1 / (1+exp[b2-b3*x]) + e
|
| 35 |
|
| 36 |
|
| 37 |
|
| 38 | Starting Values Certified Values
|
| 39 |
|
| 40 | Start 1 Start 2 Parameter Standard Deviation
|
| 41 | b1 = 100 75 7.2462237576E+01 1.7340283401E+00
|
| 42 | b2 = 1 2.5 2.6180768402E+00 8.8295217536E-02
|
| 43 | b3 = 0.1 0.07 6.7359200066E-02 3.4465663377E-03
|
| 44 |
|
| 45 | Residual Sum of Squares: 8.0565229338E+00
|
| 46 | Residual Standard Deviation: 1.1587725499E+00
|
| 47 | Degrees of Freedom: 6
|
| 48 | Number of Observations: 9
|
| 49 |
|
| 50 |
|
| 51 |
|
| 52 |
|
| 53 |
|
| 54 |
|
| 55 |
|
| 56 |
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 | Data: y x
|
| 61 | 8.930E0 9.000E0
|
| 62 | 10.800E0 14.000E0
|
| 63 | 18.590E0 21.000E0
|
| 64 | 22.330E0 28.000E0
|
| 65 | 39.350E0 42.000E0
|
| 66 | 56.110E0 57.000E0
|
| 67 | 61.730E0 63.000E0
|
| 68 | 64.620E0 70.000E0
|
| 69 | 67.080E0 79.000E0
|