Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | // |
| 31 | // A simple example of using the Ceres minimizer. |
| 32 | // |
| 33 | // Minimize 0.5 (10 - x)^2 using jacobian matrix computed using |
| 34 | // automatic differentiation. |
| 35 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 36 | #include "ceres/ceres.h" |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 37 | #include "glog/logging.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 38 | |
| 39 | using ceres::AutoDiffCostFunction; |
| 40 | using ceres::CostFunction; |
| 41 | using ceres::Problem; |
| 42 | using ceres::Solver; |
| 43 | using ceres::Solve; |
| 44 | |
Sameer Agarwal | e837aea | 2013-01-21 13:05:01 -0800 | [diff] [blame] | 45 | // A templated cost functor that implements the residual r = 10 - |
| 46 | // x. The method operator() is templated so that we can then use an |
| 47 | // automatic differentiation wrapper around it to generate its |
| 48 | // derivatives. |
Sameer Agarwal | 085cd4a | 2013-02-06 14:31:07 -0800 | [diff] [blame] | 49 | struct CostFunctor { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 50 | template <typename T> bool operator()(const T* const x, T* residual) const { |
| 51 | residual[0] = T(10.0) - x[0]; |
| 52 | return true; |
| 53 | } |
| 54 | }; |
| 55 | |
| 56 | int main(int argc, char** argv) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 57 | google::InitGoogleLogging(argv[0]); |
| 58 | |
Sameer Agarwal | 085cd4a | 2013-02-06 14:31:07 -0800 | [diff] [blame] | 59 | // The variable to solve for with its initial value. It will be |
| 60 | // mutated in place by the solver. |
| 61 | double x = 0.5; |
| 62 | const double initial_x = x; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 63 | |
| 64 | // Build the problem. |
| 65 | Problem problem; |
| 66 | |
| 67 | // Set up the only cost function (also known as residual). This uses |
| 68 | // auto-differentiation to obtain the derivative (jacobian). |
Sameer Agarwal | 085cd4a | 2013-02-06 14:31:07 -0800 | [diff] [blame] | 69 | CostFunction* cost_function = |
| 70 | new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor); |
| 71 | problem.AddResidualBlock(cost_function, NULL, &x); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 72 | |
| 73 | // Run the solver! |
| 74 | Solver::Options options; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 75 | options.minimizer_progress_to_stdout = true; |
| 76 | Solver::Summary summary; |
| 77 | Solve(options, &problem, &summary); |
Sameer Agarwal | 085cd4a | 2013-02-06 14:31:07 -0800 | [diff] [blame] | 78 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 79 | std::cout << summary.BriefReport() << "\n"; |
| 80 | std::cout << "x : " << initial_x |
| 81 | << " -> " << x << "\n"; |
| 82 | return 0; |
| 83 | } |