blob: bff1689aa4a973c50c3e5bcdcd0c4b54e850a83c [file] [log] [blame]
Sameer Agarwalfa015192012-06-11 14:21:42 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#ifndef CERES_INTERNAL_DOGLEG_STRATEGY_H_
32#define CERES_INTERNAL_DOGLEG_STRATEGY_H_
33
34#include "ceres/linear_solver.h"
35#include "ceres/trust_region_strategy.h"
36
37namespace ceres {
38namespace internal {
39
40// Dogleg step computation and trust region sizing strategy based on
41// on "Methods for Nonlinear Least Squares" by K. Madsen, H.B. Nielsen
42// and O. Tingleff. Available to download from
43//
44// http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
45//
46// One minor modification is that instead of computing the pure
47// Gauss-Newton step, we compute a regularized version of it. This is
48// because the Jacobian is often rank-deficient and in such cases
49// using a direct solver leads to numerical failure.
Markus Moll51cf7cb2012-08-20 20:10:20 +020050//
51// If SUBSPACE is passed as the type argument to the constructor, the
52// DoglegStrategy follows the approach by Shultz, Schnabel, Byrd.
53// This finds the exact optimum over the two-dimensional subspace
54// spanned by the two Dogleg vectors.
Sameer Agarwalfa015192012-06-11 14:21:42 -070055class DoglegStrategy : public TrustRegionStrategy {
56public:
57 DoglegStrategy(const TrustRegionStrategy::Options& options);
58 virtual ~DoglegStrategy() {}
59
60 // TrustRegionStrategy interface
Sameer Agarwal05292bf2012-08-20 07:40:45 -070061 virtual Summary ComputeStep(const PerSolveOptions& per_solve_options,
62 SparseMatrix* jacobian,
63 const double* residuals,
64 double* step);
Sameer Agarwalfa015192012-06-11 14:21:42 -070065 virtual void StepAccepted(double step_quality);
66 virtual void StepRejected(double step_quality);
67 virtual void StepIsInvalid();
68
69 virtual double Radius() const;
70
Markus Moll6f362462012-08-28 01:03:38 +020071 // These functions are predominantly for testing.
72 Vector gradient() const { return gradient_; }
73 Vector gauss_newton_step() const { return gauss_newton_step_; }
74 Matrix subspace_basis() const { return subspace_basis_; }
75 Vector subspace_g() const { return subspace_g_; }
76 Matrix subspace_B() const { return subspace_B_; }
77
Sameer Agarwalfa015192012-06-11 14:21:42 -070078 private:
Markus Moll51cf7cb2012-08-20 20:10:20 +020079 typedef Eigen::Matrix<double, 2, 1, Eigen::DontAlign> Vector2d;
80 typedef Eigen::Matrix<double, 2, 2, Eigen::DontAlign> Matrix2d;
81
Sameer Agarwalfa015192012-06-11 14:21:42 -070082 LinearSolver::Summary ComputeGaussNewtonStep(SparseMatrix* jacobian,
83 const double* residuals);
Markus Molla3fb17c2012-08-15 15:37:27 +020084 void ComputeCauchyPoint(SparseMatrix* jacobian);
85 void ComputeGradient(SparseMatrix* jacobian, const double* residuals);
Markus Moll51cf7cb2012-08-20 20:10:20 +020086 void ComputeTraditionalDoglegStep(double* step);
87 bool ComputeSubspaceModel(SparseMatrix* jacobian);
88 void ComputeSubspaceDoglegStep(double* step);
89
90 bool FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const;
91 Vector MakePolynomialForBoundaryConstrainedProblem() const;
92 Vector2d ComputeSubspaceStepFromRoot(double lambda) const;
93 double EvaluateSubspaceModel(const Vector2d& x) const;
Sameer Agarwalfa015192012-06-11 14:21:42 -070094
95 LinearSolver* linear_solver_;
96 double radius_;
97 const double max_radius_;
98
99 const double min_diagonal_;
100 const double max_diagonal_;
101
102 // mu is used to scale the diagonal matrix used to make the
103 // Gauss-Newton solve full rank. In each solve, the strategy starts
104 // out with mu = min_mu, and tries values upto max_mu. If the user
105 // reports an invalid step, the value of mu_ is increased so that
106 // the next solve starts with a stronger regularization.
107 //
108 // If a successful step is reported, then the value of mu_ is
109 // decreased with a lower bound of min_mu_.
110 double mu_;
111 const double min_mu_;
112 const double max_mu_;
113 const double mu_increase_factor_;
114 const double increase_threshold_;
115 const double decrease_threshold_;
116
Markus Molla3fb17c2012-08-15 15:37:27 +0200117 Vector diagonal_; // sqrt(diag(J^T J))
Sameer Agarwalfa015192012-06-11 14:21:42 -0700118 Vector lm_diagonal_;
119
120 Vector gradient_;
121 Vector gauss_newton_step_;
122
123 // cauchy_step = alpha * gradient
124 double alpha_;
125 double dogleg_step_norm_;
126
127 // When, ComputeStep is called, reuse_ indicates whether the
128 // Gauss-Newton and Cauchy steps from the last call to ComputeStep
129 // can be reused or not.
130 //
131 // If the user called StepAccepted, then it is expected that the
132 // user has recomputed the Jacobian matrix and new Gauss-Newton
133 // solve is needed and reuse is set to false.
134 //
135 // If the user called StepRejected, then it is expected that the
136 // user wants to solve the trust region problem with the same matrix
137 // but a different trust region radius and the Gauss-Newton and
138 // Cauchy steps can be reused to compute the Dogleg, thus reuse is
139 // set to true.
140 //
141 // If the user called StepIsInvalid, then there was a numerical
142 // problem with the step computed in the last call to ComputeStep,
143 // and the regularization used to do the Gauss-Newton solve is
144 // increased and a new solve should be done when ComputeStep is
145 // called again, thus reuse is set to false.
146 bool reuse_;
Markus Moll51cf7cb2012-08-20 20:10:20 +0200147
148 // The dogleg type determines how the minimum of the local
149 // quadratic model is found.
150 DoglegType dogleg_type_;
151
152 // If the type is SUBSPACE_DOGLEG, the two-dimensional
153 // model 1/2 x^T B x + g^T x has to be computed and stored.
154 bool subspace_is_one_dimensional_;
155 Matrix subspace_basis_;
156 Vector2d subspace_g_;
157 Matrix2d subspace_B_;
Sameer Agarwalfa015192012-06-11 14:21:42 -0700158};
159
160} // namespace internal
161} // namespace ceres
162
163#endif // CERES_INTERNAL_DOGLEG_STRATEGY_H_