Sameer Agarwal | ea11704 | 2012-08-29 18:18:48 -0700 | [diff] [blame] | 1 | NIST/ITL StRD
|
| 2 | Dataset Name: Rat43 (Rat43.dat)
|
| 3 |
|
| 4 | File Format: ASCII
|
| 5 | Starting Values (lines 41 to 44)
|
| 6 | Certified Values (lines 41 to 49)
|
| 7 | Data (lines 61 to 75)
|
| 8 |
|
| 9 | Procedure: Nonlinear Least Squares Regression
|
| 10 |
|
| 11 | Description: This model and data are an example of fitting
|
| 12 | sigmoidal growth curves taken from Ratkowsky (1983).
|
| 13 | The response variable is the dry weight of onion bulbs
|
| 14 | and tops, and the predictor variable is growing time.
|
| 15 |
|
| 16 |
|
| 17 | Reference: Ratkowsky, D.A. (1983).
|
| 18 | Nonlinear Regression Modeling.
|
| 19 | New York, NY: Marcel Dekker, pp. 62 and 88.
|
| 20 |
|
| 21 |
|
| 22 |
|
| 23 |
|
| 24 |
|
| 25 | Data: 1 Response (y = onion bulb dry weight)
|
| 26 | 1 Predictor (x = growing time)
|
| 27 | 15 Observations
|
| 28 | Higher Level of Difficulty
|
| 29 | Observed Data
|
| 30 |
|
| 31 | Model: Exponential Class
|
| 32 | 4 Parameters (b1 to b4)
|
| 33 |
|
| 34 | y = b1 / ((1+exp[b2-b3*x])**(1/b4)) + e
|
| 35 |
|
| 36 |
|
| 37 |
|
| 38 | Starting Values Certified Values
|
| 39 |
|
| 40 | Start 1 Start 2 Parameter Standard Deviation
|
| 41 | b1 = 100 700 6.9964151270E+02 1.6302297817E+01
|
| 42 | b2 = 10 5 5.2771253025E+00 2.0828735829E+00
|
| 43 | b3 = 1 0.75 7.5962938329E-01 1.9566123451E-01
|
| 44 | b4 = 1 1.3 1.2792483859E+00 6.8761936385E-01
|
| 45 |
|
| 46 | Residual Sum of Squares: 8.7864049080E+03
|
| 47 | Residual Standard Deviation: 2.8262414662E+01
|
| 48 | Degrees of Freedom: 9
|
| 49 | Number of Observations: 15
|
| 50 |
|
| 51 |
|
| 52 |
|
| 53 |
|
| 54 |
|
| 55 |
|
| 56 |
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 | Data: y x
|
| 61 | 16.08E0 1.0E0
|
| 62 | 33.83E0 2.0E0
|
| 63 | 65.80E0 3.0E0
|
| 64 | 97.20E0 4.0E0
|
| 65 | 191.55E0 5.0E0
|
| 66 | 326.20E0 6.0E0
|
| 67 | 386.87E0 7.0E0
|
| 68 | 520.53E0 8.0E0
|
| 69 | 590.03E0 9.0E0
|
| 70 | 651.92E0 10.0E0
|
| 71 | 724.93E0 11.0E0
|
| 72 | 699.56E0 12.0E0
|
| 73 | 689.96E0 13.0E0
|
| 74 | 637.56E0 14.0E0
|
| 75 | 717.41E0 15.0E0
|