Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // |
| 31 | // An iterative solver for solving the Schur complement/reduced camera |
| 32 | // linear system that arise in SfM problems. |
| 33 | |
| 34 | #ifndef CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_ |
| 35 | #define CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_ |
| 36 | |
| 37 | #include "ceres/linear_operator.h" |
| 38 | #include "ceres/partitioned_matrix_view.h" |
| 39 | #include "ceres/internal/eigen.h" |
| 40 | #include "ceres/internal/scoped_ptr.h" |
| 41 | #include "ceres/types.h" |
| 42 | |
| 43 | namespace ceres { |
| 44 | namespace internal { |
| 45 | |
| 46 | class BlockSparseMatrix; |
| 47 | class BlockSparseMatrixBase; |
| 48 | |
| 49 | // This class implements various linear algebraic operations related |
| 50 | // to the Schur complement without explicitly forming it. |
| 51 | // |
| 52 | // |
| 53 | // Given a reactangular linear system Ax = b, where |
| 54 | // |
| 55 | // A = [E F] |
| 56 | // |
| 57 | // The normal equations are given by |
| 58 | // |
| 59 | // A'Ax = A'b |
| 60 | // |
| 61 | // |E'E E'F||y| = |E'b| |
| 62 | // |F'E F'F||z| |F'b| |
| 63 | // |
| 64 | // and the Schur complement system is given by |
| 65 | // |
| 66 | // [F'F - F'E (E'E)^-1 E'F] z = F'b - F'E (E'E)^-1 E'b |
| 67 | // |
| 68 | // Now if we wish to solve Ax = b in the least squares sense, one way |
| 69 | // is to form this Schur complement system and solve it using |
| 70 | // Preconditioned Conjugate Gradients. |
| 71 | // |
| 72 | // The key operation in a conjugate gradient solver is the evaluation of the |
| 73 | // matrix vector product with the Schur complement |
| 74 | // |
| 75 | // S = F'F - F'E (E'E)^-1 E'F |
| 76 | // |
| 77 | // It is straightforward to see that matrix vector products with S can |
| 78 | // be evaluated without storing S in memory. Instead, given (E'E)^-1 |
| 79 | // (which for our purposes is an easily inverted block diagonal |
| 80 | // matrix), it can be done in terms of matrix vector products with E, |
| 81 | // F and (E'E)^-1. This class implements this functionality and other |
| 82 | // auxilliary bits needed to implement a CG solver on the Schur |
| 83 | // complement using the PartitionedMatrixView object. |
| 84 | // |
| 85 | // THREAD SAFETY: This class is nqot thread safe. In particular, the |
| 86 | // RightMultiply (and the LeftMultiply) methods are not thread safe as |
| 87 | // they depend on mutable arrays used for the temporaries needed to |
| 88 | // compute the product y += Sx; |
| 89 | class ImplicitSchurComplement : public LinearOperator { |
| 90 | public: |
| 91 | // num_eliminate_blocks is the number of E blocks in the matrix |
| 92 | // A. |
| 93 | // |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 94 | // preconditioner indicates whether the inverse of the matrix F'F |
| 95 | // should be computed or not as a preconditioner for the Schur |
| 96 | // Complement. |
| 97 | // |
| 98 | // TODO(sameeragarwal): Get rid of the two bools below and replace |
| 99 | // them with enums. |
Sameer Agarwal | a9d8ef8 | 2012-05-14 02:28:05 -0700 | [diff] [blame] | 100 | ImplicitSchurComplement(int num_eliminate_blocks, bool preconditioner); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 101 | virtual ~ImplicitSchurComplement(); |
| 102 | |
| 103 | // Initialize the Schur complement for a linear least squares |
| 104 | // problem of the form |
| 105 | // |
| 106 | // |A | x = |b| |
| 107 | // |diag(D)| |0| |
| 108 | // |
| 109 | // If D is null, then it is treated as a zero dimensional matrix. It |
| 110 | // is important that the matrix A have a BlockStructure object |
| 111 | // associated with it and has a block structure that is compatible |
| 112 | // with the SchurComplement solver. |
| 113 | void Init(const BlockSparseMatrixBase& A, const double* D, const double* b); |
| 114 | |
| 115 | // y += Sx, where S is the Schur complement. |
| 116 | virtual void RightMultiply(const double* x, double* y) const; |
| 117 | |
| 118 | // The Schur complement is a symmetric positive definite matrix, |
| 119 | // thus the left and right multiply operators are the same. |
| 120 | virtual void LeftMultiply(const double* x, double* y) const { |
| 121 | RightMultiply(x, y); |
| 122 | } |
| 123 | |
| 124 | // y = (E'E)^-1 (E'b - E'F x). Given an estimate of the solution to |
| 125 | // the Schur complement system, this method computes the value of |
| 126 | // the e_block variables that were eliminated to form the Schur |
| 127 | // complement. |
| 128 | void BackSubstitute(const double* x, double* y); |
| 129 | |
| 130 | virtual int num_rows() const { return A_->num_cols_f(); } |
| 131 | virtual int num_cols() const { return A_->num_cols_f(); } |
| 132 | const Vector& rhs() const { return rhs_; } |
| 133 | |
| 134 | const BlockSparseMatrix* block_diagonal_EtE_inverse() const { |
| 135 | return block_diagonal_EtE_inverse_.get(); |
| 136 | } |
| 137 | |
| 138 | const BlockSparseMatrix* block_diagonal_FtF_inverse() const { |
| 139 | return block_diagonal_FtF_inverse_.get(); |
| 140 | } |
| 141 | |
| 142 | private: |
| 143 | void AddDiagonalAndInvert(const double* D, BlockSparseMatrix* matrix); |
| 144 | void UpdateRhs(); |
| 145 | |
| 146 | int num_eliminate_blocks_; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 147 | bool preconditioner_; |
| 148 | |
| 149 | scoped_ptr<PartitionedMatrixView> A_; |
| 150 | const double* D_; |
| 151 | const double* b_; |
| 152 | |
| 153 | scoped_ptr<BlockSparseMatrix> block_diagonal_EtE_inverse_; |
| 154 | scoped_ptr<BlockSparseMatrix> block_diagonal_FtF_inverse_; |
| 155 | |
| 156 | Vector rhs_; |
| 157 | |
| 158 | // Temporary storage vectors used to implement RightMultiply. |
| 159 | mutable Vector tmp_rows_; |
| 160 | mutable Vector tmp_e_cols_; |
| 161 | mutable Vector tmp_e_cols_2_; |
| 162 | mutable Vector tmp_f_cols_; |
| 163 | }; |
| 164 | |
| 165 | } // namespace internal |
| 166 | } // namespace ceres |
| 167 | |
| 168 | #endif // CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_ |