blob: 48f7d2402aba71cc05c477a3288ece214cee5a43 [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "ceres/partitioned_matrix_view.h"
32
33#include <vector>
Keir Mierle8ebb0732012-04-30 23:09:08 -070034#include "ceres/block_structure.h"
35#include "ceres/casts.h"
Sameer Agarwal0beab862012-08-13 15:12:01 -070036#include "ceres/internal/eigen.h"
37#include "ceres/internal/scoped_ptr.h"
Keir Mierle8ebb0732012-04-30 23:09:08 -070038#include "ceres/linear_least_squares_problems.h"
39#include "ceres/random.h"
40#include "ceres/sparse_matrix.h"
Sameer Agarwal0beab862012-08-13 15:12:01 -070041#include "glog/logging.h"
42#include "gtest/gtest.h"
Keir Mierle8ebb0732012-04-30 23:09:08 -070043
44namespace ceres {
45namespace internal {
46
47const double kEpsilon = 1e-14;
48
49class PartitionedMatrixViewTest : public ::testing::Test {
50 protected :
51 virtual void SetUp() {
52 scoped_ptr<LinearLeastSquaresProblem> problem(
53 CreateLinearLeastSquaresProblemFromId(2));
54 CHECK_NOTNULL(problem.get());
55 A_.reset(problem->A.release());
56
57 num_cols_ = A_->num_cols();
58 num_rows_ = A_->num_rows();
59 num_eliminate_blocks_ = problem->num_eliminate_blocks;
60 }
61
62 int num_rows_;
63 int num_cols_;
64 int num_eliminate_blocks_;
65
66 scoped_ptr<SparseMatrix> A_;
67};
68
69TEST_F(PartitionedMatrixViewTest, DimensionsTest) {
70 PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()),
71 num_eliminate_blocks_);
72 EXPECT_EQ(m.num_col_blocks_e(), num_eliminate_blocks_);
73 EXPECT_EQ(m.num_col_blocks_f(), num_cols_ - num_eliminate_blocks_);
74 EXPECT_EQ(m.num_cols_e(), num_eliminate_blocks_);
75 EXPECT_EQ(m.num_cols_f(), num_cols_ - num_eliminate_blocks_);
76 EXPECT_EQ(m.num_cols(), A_->num_cols());
77 EXPECT_EQ(m.num_rows(), A_->num_rows());
78}
79
80TEST_F(PartitionedMatrixViewTest, RightMultiplyE) {
81 PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()),
82 num_eliminate_blocks_);
83
84 srand(5);
85
86 Vector x1(m.num_cols_e());
87 Vector x2(m.num_cols());
88 x2.setZero();
89
90 for (int i = 0; i < m.num_cols_e(); ++i) {
91 x1(i) = x2(i) = RandDouble();
92 }
93
94 Vector y1 = Vector::Zero(m.num_rows());
95 m.RightMultiplyE(x1.data(), y1.data());
96
97 Vector y2 = Vector::Zero(m.num_rows());
98 A_->RightMultiply(x2.data(), y2.data());
99
100 for (int i = 0; i < m.num_rows(); ++i) {
101 EXPECT_NEAR(y1(i), y2(i), kEpsilon);
102 }
103}
104
105TEST_F(PartitionedMatrixViewTest, RightMultiplyF) {
106 PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()),
107 num_eliminate_blocks_);
108
109 srand(5);
110
111 Vector x1(m.num_cols_f());
112 Vector x2 = Vector::Zero(m.num_cols());
113
114 for (int i = 0; i < m.num_cols_f(); ++i) {
115 x1(i) = RandDouble();
116 x2(i + m.num_cols_e()) = x1(i);
117 }
118
119 Vector y1 = Vector::Zero(m.num_rows());
120 m.RightMultiplyF(x1.data(), y1.data());
121
122 Vector y2 = Vector::Zero(m.num_rows());
123 A_->RightMultiply(x2.data(), y2.data());
124
125 for (int i = 0; i < m.num_rows(); ++i) {
126 EXPECT_NEAR(y1(i), y2(i), kEpsilon);
127 }
128}
129
130TEST_F(PartitionedMatrixViewTest, LeftMultiply) {
131 PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()),
132 num_eliminate_blocks_);
133
134 srand(5);
135
136 Vector x = Vector::Zero(m.num_rows());
137 for (int i = 0; i < m.num_rows(); ++i) {
138 x(i) = RandDouble();
139 }
140
141 Vector y = Vector::Zero(m.num_cols());
142 Vector y1 = Vector::Zero(m.num_cols_e());
143 Vector y2 = Vector::Zero(m.num_cols_f());
144
145 A_->LeftMultiply(x.data(), y.data());
146 m.LeftMultiplyE(x.data(), y1.data());
147 m.LeftMultiplyF(x.data(), y2.data());
148
149 for (int i = 0; i < m.num_cols(); ++i) {
150 EXPECT_NEAR(y(i),
151 (i < m.num_cols_e()) ? y1(i) : y2(i - m.num_cols_e()),
152 kEpsilon);
153 }
154}
155
156TEST_F(PartitionedMatrixViewTest, BlockDiagonalEtE) {
157 PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()),
158 num_eliminate_blocks_);
159
160 scoped_ptr<BlockSparseMatrix>
161 block_diagonal_ee(m.CreateBlockDiagonalEtE());
162 const CompressedRowBlockStructure* bs = block_diagonal_ee->block_structure();
163
164 EXPECT_EQ(block_diagonal_ee->num_rows(), 2);
165 EXPECT_EQ(block_diagonal_ee->num_cols(), 2);
166 EXPECT_EQ(bs->cols.size(), 2);
167 EXPECT_EQ(bs->rows.size(), 2);
168
169 EXPECT_NEAR(block_diagonal_ee->values()[0], 10.0, kEpsilon);
170 EXPECT_NEAR(block_diagonal_ee->values()[1], 155.0, kEpsilon);
171}
172
173TEST_F(PartitionedMatrixViewTest, BlockDiagonalFtF) {
174 PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()),
175 num_eliminate_blocks_);
176
177 scoped_ptr<BlockSparseMatrix>
178 block_diagonal_ff(m.CreateBlockDiagonalFtF());
179 const CompressedRowBlockStructure* bs = block_diagonal_ff->block_structure();
180
181 EXPECT_EQ(block_diagonal_ff->num_rows(), 3);
182 EXPECT_EQ(block_diagonal_ff->num_cols(), 3);
183 EXPECT_EQ(bs->cols.size(), 3);
184 EXPECT_EQ(bs->rows.size(), 3);
185 EXPECT_NEAR(block_diagonal_ff->values()[0], 70.0, kEpsilon);
186 EXPECT_NEAR(block_diagonal_ff->values()[1], 17.0, kEpsilon);
187 EXPECT_NEAR(block_diagonal_ff->values()[2], 37.0, kEpsilon);
188}
189
190} // namespace internal
191} // namespace ceres