Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | // |
| 31 | // This fits circles to a collection of points, where the error is related to |
| 32 | // the distance of a point from the circle. This uses auto-differentiation to |
| 33 | // take the derivatives. |
| 34 | // |
| 35 | // The input format is simple text. Feed on standard in: |
| 36 | // |
| 37 | // x_initial y_initial r_initial |
| 38 | // x1 y1 |
| 39 | // x2 y2 |
| 40 | // y3 y3 |
| 41 | // ... |
| 42 | // |
| 43 | // And the result after solving will be printed to stdout: |
| 44 | // |
| 45 | // x y r |
| 46 | // |
| 47 | // There are closed form solutions [1] to this problem which you may want to |
| 48 | // consider instead of using this one. If you already have a decent guess, Ceres |
| 49 | // can squeeze down the last bit of error. |
| 50 | // |
| 51 | // [1] http://www.mathworks.com/matlabcentral/fileexchange/5557-circle-fit/content/circfit.m |
| 52 | |
| 53 | #include <cstdio> |
| 54 | #include <vector> |
| 55 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 56 | #include "ceres/ceres.h" |
Sameer Agarwal | 4b04043 | 2012-08-13 14:38:41 -0700 | [diff] [blame] | 57 | #include "gflags/gflags.h" |
| 58 | #include "glog/logging.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 59 | |
| 60 | using ceres::AutoDiffCostFunction; |
| 61 | using ceres::CauchyLoss; |
| 62 | using ceres::CostFunction; |
| 63 | using ceres::LossFunction; |
| 64 | using ceres::Problem; |
| 65 | using ceres::Solve; |
| 66 | using ceres::Solver; |
| 67 | |
Sameer Agarwal | 6447219 | 2012-05-03 21:53:07 -0700 | [diff] [blame] | 68 | DEFINE_double(robust_threshold, 0.0, "Robust loss parameter. Set to 0 for " |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 69 | "normal squared error (no robustification)."); |
| 70 | |
| 71 | // The cost for a single sample. The returned residual is related to the |
| 72 | // distance of the point from the circle (passed in as x, y, m parameters). |
| 73 | // |
| 74 | // Note that the radius is parameterized as r = m^2 to constrain the radius to |
| 75 | // positive values. |
| 76 | class DistanceFromCircleCost { |
| 77 | public: |
| 78 | DistanceFromCircleCost(double xx, double yy) : xx_(xx), yy_(yy) {} |
| 79 | template <typename T> bool operator()(const T* const x, |
| 80 | const T* const y, |
| 81 | const T* const m, // r = m^2 |
| 82 | T* residual) const { |
| 83 | // Since the radius is parameterized as m^2, unpack m to get r. |
| 84 | T r = *m * *m; |
| 85 | |
| 86 | // Get the position of the sample in the circle's coordinate system. |
| 87 | T xp = xx_ - *x; |
| 88 | T yp = yy_ - *y; |
| 89 | |
| 90 | // It is tempting to use the following cost: |
| 91 | // |
Sameer Agarwal | 6447219 | 2012-05-03 21:53:07 -0700 | [diff] [blame] | 92 | // residual[0] = r - sqrt(xp*xp + yp*yp); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 93 | // |
| 94 | // which is the distance of the sample from the circle. This works |
| 95 | // reasonably well, but the sqrt() adds strong nonlinearities to the cost |
| 96 | // function. Instead, a different cost is used, which while not strictly a |
| 97 | // distance in the metric sense (it has units distance^2) it produces more |
| 98 | // robust fits when there are outliers. This is because the cost surface is |
| 99 | // more convex. |
| 100 | residual[0] = r*r - xp*xp - yp*yp; |
| 101 | return true; |
| 102 | } |
| 103 | |
| 104 | private: |
| 105 | // The measured x,y coordinate that should be on the circle. |
| 106 | double xx_, yy_; |
| 107 | }; |
| 108 | |
| 109 | int main(int argc, char** argv) { |
| 110 | google::ParseCommandLineFlags(&argc, &argv, true); |
| 111 | google::InitGoogleLogging(argv[0]); |
| 112 | |
| 113 | double x, y, r; |
| 114 | if (scanf("%lg %lg %lg", &x, &y, &r) != 3) { |
| 115 | fprintf(stderr, "Couldn't read first line.\n"); |
| 116 | return 1; |
| 117 | } |
| 118 | fprintf(stderr, "Got x, y, r %lg, %lg, %lg\n", x, y, r); |
| 119 | |
| 120 | // Save initial values for comparison. |
| 121 | double initial_x = x; |
| 122 | double initial_y = y; |
| 123 | double initial_r = r; |
| 124 | |
| 125 | // Parameterize r as m^2 so that it can't be negative. |
| 126 | double m = sqrt(r); |
| 127 | |
| 128 | Problem problem; |
| 129 | |
| 130 | // Configure the loss function. |
| 131 | LossFunction* loss = NULL; |
| 132 | if (FLAGS_robust_threshold) { |
| 133 | loss = new CauchyLoss(FLAGS_robust_threshold); |
| 134 | } |
| 135 | |
| 136 | // Add the residuals. |
| 137 | double xx, yy; |
| 138 | int num_points = 0; |
| 139 | while (scanf("%lf %lf\n", &xx, &yy) == 2) { |
| 140 | CostFunction *cost = |
| 141 | new AutoDiffCostFunction<DistanceFromCircleCost, 1, 1, 1, 1>( |
| 142 | new DistanceFromCircleCost(xx, yy)); |
| 143 | problem.AddResidualBlock(cost, loss, &x, &y, &m); |
| 144 | num_points++; |
| 145 | } |
| 146 | |
| 147 | std::cout << "Got " << num_points << " points.\n"; |
| 148 | |
| 149 | // Build and solve the problem. |
| 150 | Solver::Options options; |
| 151 | options.max_num_iterations = 500; |
| 152 | options.linear_solver_type = ceres::DENSE_QR; |
| 153 | Solver::Summary summary; |
| 154 | Solve(options, &problem, &summary); |
| 155 | |
| 156 | // Recover r from m. |
| 157 | r = m * m; |
| 158 | |
| 159 | std::cout << summary.BriefReport() << "\n"; |
| 160 | std::cout << "x : " << initial_x << " -> " << x << "\n"; |
| 161 | std::cout << "y : " << initial_y << " -> " << y << "\n"; |
| 162 | std::cout << "r : " << initial_r << " -> " << r << "\n"; |
| 163 | return 0; |
| 164 | } |